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ABSTRACT

Introduction. Crescentic glomerulonephritis (CrGN) with rapidly progressive renal function loss necessitates prompt
pathology diagnosis and treatment. Non-invasive biomarkers are crucial in cases where renal biopsy is unavailable or
unsuitable. Urinary proteomics, particularly data-independent acquisition (DIA) proteomics, might provide potential
indicators.

Methods. We recruited crescentic nephritis proved by renal biopsy at Peking Union Medical College Hospital (PUMCH)
from May 2022 to April 2023 and age-matched nephritis, acute kidney injury (AKI), and health controls. The CrGN group
is the patients with extensive glomerular crescents over 50%. We performed liquid chromatography with tandem mass
spectrometry analysis to identify differentially expressed proteins (DEPs), ingenuity pathway analysis (IPA), and the
proteome map for significant pathways and crucial proteins among patients and controls, then validated using
enzyme-linked immunosorbent assay analysis.

Results. We enrolled a total of 137 participants, 55 in the proteomics cohort [15 CrGN (Type I: n = 1, II: n = 3, IIl: n = 11), 10
AKI, 15 non-crescentic nephritis, 15 healthy controls] and 82 in the validation cohort (33 CrGN, 6 AKI, 43 nephritis). Males
occupied 42.3%, and the average age was 48 years of age. IPA analysis showed that neutrophil degranulation and
complement cascade were the top two pathways in CrGN but not in the healthy and nephritis groups. Pathway analysis
revealed activation of the neddylation pathway in CrGN compared to AKI patients. After integrating the DEPs among
three groups via the Venn plot, we observed eight DEPs significantly associated with the CrGN, among which Coagulation
factor V (F5), Phospholipid transfer protein (PLTP), and alcohol dehydrogenase 1C were significant proteins. The area
under the curve values of F5 and PLTP in the validation cohort for predicting CrGN were 0.831 and 0.780 (P < .001).
Conclusion. By non-invasive urine proteomics, the new biomarkers F5/UCr and PLTP/UCr hold promise in identifying
the CrGN patient.
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KEY LEARNING POINTS

What was known:

This study adds:

using data-independent acquisition (DIA) proteomics.

mechanisms in CrGN.

Potential impact:

potentially improving patient outcomes.

e Crescentic glomerulonephritis (CrGN) is a rapidly progressive renal disease requiring timely diagnosis and treatment.
e Traditional diagnostic methods, such as renal biopsy, are invasive and carry risks.
e Non-invasive biomarkers for detecting disease activity and guiding treatment decisions were lacking.

e This study identifies urinary Coagulation factor V (F5) and phospholipid transfer protein (PLTP) as novel biomarkers for CrGN

e Pathway analysis reveals the activation of neutrophil degranulation, complement cascade, and neddylation pathways as key

e Urinary F5 and PLTP biomarkers may offer a non-invasive, clinically useful tool for diagnosing and monitoring CrGN.
e The pathway insights could guide future therapeutic strategies targeting complement and neutrophil activation pathways,

INTRODUCTION

Crescentic glomerulonephritis (CrGN), which usually presents
as AKI or even progressive GN, is one of the most severe
causes of rapid renal function loss. The primary causes of
CrGN are so complicated and include immune-complex GN,
anti-glomerular basement membrane GN (anti-GBM diseases),
ANCA-associated vasculitis (AAV), C3 glomerulopathy, and mon-
oclonal immunoglobulin-associated renal diseases, among oth-
ers [1]. Multiple causes and varied clinical characteristics pose
significant challenges in the differential diagnosis of CrGN and
depend on the pathological evidence of renal biopsy in clinical
practice. Unfortunately, the patient’s participation, acceptance,
and relative contraindications always limit the ability to exe-
cute prompt renal puncture biopsy, affecting the diagnosis and
treatment of these patients who bear a risk of a poor renal prog-
nosis. Furthermore, retrospective biopsy-based series have re-
ported a prevalence varying from 2.1% to 4.2% |2, 3]. Therefore,
non-invasive biomarkers and predictive models for CrGN are ur-
gently needed to assist with timely and accurate individualized
diagnosis and treatment.

Given the urgent clinical needs, many scholars have explored
the biomarker and prediction models, such as urinary iron
death inhibitory protein (FSP1) from AKI and compatible sen-
sitivity and specificity in CrGN [4]. Recent studies have demon-
strated that proteomics contributed to screening a panel of new
biomarkers of activity and prognostic for renal disease [5, 6].
However, there is still a shortage of biomarkers focused on the
general mechanism of crescent formation for different reasons,
with urgent need for further in-depth studies. Therefore, this
study intends to apply DIA proteomics technology to discover
biomarkers associated with CrGN for early clinical identification
and medical treatment.

MATERIALS AND METHODS
Baseline clinical characteristics of proteomics cohort

This prospective study utilized consecutively collected urine
samples from patients undergoing renal biopsy at Peking Union
Medical College Hospital (PUMCH) between May 2022 and April
2023. We recruited age-matched healthy controls and divided
the patients into the CrGN, nephritis, and non-crescentic AKI
group (Fig. 1). The CrGN group was patients with a pathologic
condition characterized by extra capillary proliferation in >50%

of glomeruli. The CrGN group was classified into three types,
including Type I (anti-glomerular basement membrane anti-
body disease), Type II (immune-complex mediated), and Type
III (pauci-immune, typically AAV) [1]. Classification was based
on immunofluorescence, serological testing, and renal biopsy
findings. The screening criteria for the nephritis group were GN
without crescent formation. AKI group was patients with a rise
in SCr of >26.5 mol/l within 48 h, or in SCr to >1.5 times the base-
line value within 7 d, or a urine output of <0.5 ml/kg/h for six
consecutive hours, and diagnosed as AKI by renal pathology with
no crescentic nephritis. Healthy controls were recruited from in-
dividuals undergoing routine health check-ups at PUMCH who
provided informed consent. Inclusion criteria required normal
serum creatinine and estimated glomerular filtration rate (eGFR
>90 ml/min/1.73 m?), along with unremarkable urinalysis re-
sults, including absence of hematuria, proteinuria, and leukocy-
turia. Additionally, participants were screened through medical
history review and physical examination to exclude known risk
factors for kidney disease. Composite adverse renal outcomes
were defined as progression to end-stage renal disease (ESRD),
requirement for dialysis, or a sustained >50% decline in eGFR
from baseline. Baseline clinical characteristics were collected
and documented with the blood and urine examinations on
admission. The Ethical Committee approved the PUMCH study
(No. K2185). Informed consent is taken from all the participants
present in the study.

LIQUID CHROMATOGRAPHY WITH TANDEM
MASS SPECTROMETRY ANALYSIS

Mid-stream urine samples were collected in the morning and
immediately centrifuged at 4500 rpm for 15 minutes at 4°C to
remove cellular components and debris, then collected the su-
pernatant and stored at —80°C for further experiments. Later, the
urine samples were processed using a urine proteome prepara-
tion kit (cat. no. PN-23677, Biomsomics). One microgram of the
samples was analyzed using an analytical column (Thermo Sci-
entific, 75 pm x 250 mm, 2 pm) on a Vanquish connected to
an Orbitrap Exploris480 mass spectrometer (Thermo Scientific).
We eluted the peptides by a binary solvent system with 99.9%
H,0, 0.1% formic acid (phase A), and 80% ACN, 19.9% H,0, 0.1%
formic acid (phase B). The following linear gradient was used:
0%-1% B in 5 min, 1%6% B in 1 min, 6%-23% B in 66 min, 23%—
35% B in 6 min, 35%-90% B in 2 min, 90%-100% B in 1.5 min,
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Figure 1: Patient flowchart. Flow diagram of participant enrollment and grouping. A total of 137 participants were recruited: 55 in the proteomics cohort (15 CrGN,
10 acute AKI, 15 non-crescentic nephritis, 15 healthy controls), and 82 in the validation cohort (33 CrGN, 6 AKI, 43 nephritis). CrtGN was defined by >50% glomerular
crescents on renal biopsy. AKI controls had non-glomerular AKI without crescents. Exclusion criteria included inadequate samples or incomplete clinical data. PPI,

protein-protein interactions network.

and equilibrated with 100% A for 0.5 min. The eluent was intro-
duced directly to an Orbitrap Exploris480 mass spectrometer via
an EASY-Spray ion source. Source ionization parameters were:
spray voltage, 2.3 kV and capillary temperature, 320°C. For the
urine samples, a DIA MS method in which one full scan (350
to 1200 m/z, resolution 120000 at 200 m/z) at a target of 3e6
ions was first performed, followed by 80 windows with a reso-
lution of 30000 where precursor ions fragmented with higher-
energy collisional dissociation (stepped collision energy 25%,
30%, 35%) and analyzed with an AGC target of 2e5 ions and max-
imum injection time at 50 ms in mode using centroid positive
polarity.

Data processing

We processed the raw data by DIA-NN v.1.8.1, then set the En-
zyme specificity as C-terminal to arginine and lysine, with a
maximum of two missed cleavages in the database search. Later,
identified the peptide with an allowed initial precursor mass de-
viation of up to 10 ppm and an allowed fragment mass deviation
of 0.02 Da, searched criteria including carbamidomethylation of
cysteine as a fixed modification, and oxidation of methionine

and acetyl (protein N terminus) as variable modifications. false
discovery rate (FDR) was set to 1% at both protein and peptide
precursor levels, with the search for library-free with in silico di-
gestion, deep learning-based spectra, and retention time predic-
tion. The human fasta file was from UniProt (2023 release, 81 803
entries).

DIA proteomics data analysis

For proteomic analysis of the collected clinical samples, pro-
teins were filtered to retain those with at least 50% valid val-
ues across all samples, a commonly accepted threshold in pro-
teomics data analysis [7]. Proteins with >50% missingness were
excluded from downstream statistical analysis. Missing values
in the remaining proteins were imputed using the K-nearest
neighbor method, which estimates missing values based on
sample similarity [8]. This imputation strategy, followed by me-
dian normalization, helps preserve data structure and reduce
inter-experimental bias.

All statistical analyses and visualizations were performed
using R software (version 4.3.2). Proteomic differential expres-
sion analysis was conducted using Perseus software, applying
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Table 1: The clinical characteristics of proteomics cohort.

Variable Total (n = 55) CrGN group (n =15) AKI group (n =10) Nephritis group (n = 15) Health group (n = 15) P value
Male, n (%) 25 (45.5) 7 (46.7) 5 (50.0) 6 (40.0) 7 (46.7) 964

Age (years) 52.8 +13.2 53.6 £ 14.5 49.3 £15.2 49.3 +£15.0 579+6.1 259

Scr (pmol/l) 121.0 (75.0- 234.0)  235.0 (165.0- 550.0)*  284.5 (198.8-485.5)? 92.0 (83.0- 119.5) 71.0 (65.0-75.5) <.001

eGFR (ml/min/ 46.36 (23.52,78.18) 23.70 (8.24,29.99) 17.01 (10.66,24.38) 62.86 (48.25,71.88) 88.37 (77.57,96.54) <.001

1.73 m?)

24h-Pro (g) 0.60 (0.00-1.57) 1.41 (0.69-3.73) 0.91 (0.22-2.24) 0.74 (0.38-1.42) NA 210

CRP (mg/]) 0.96 (0.00-5.33) 2.00 (0.61-36.20) 2.17 (1.02-23.09) 1.94 (0.85-5.33) NA 881

ESR (mm/h) 17.0 (0.0-44.5) 63.5 (40.3-91.5)2 37.0 (36.0-40.0) 17.0 (14.0-29.5) NA 031

D-dimer (mg/l) 0.35 (0.00-1.23) 1.46 (1.15-3.88)? 0.64 (0.21-1.23)2 0.40 (0.23-0.59) NA .003

24h-Pro, 24 h urine protein.
2CrGN group versus AKI group, SCr P = .868; ESR P = .240; D-dimer P = .021.

two-sample t-tests to compare groups. To identify differentially
expressed proteins (DEPs), we applied thresholds of [log2 fold
change| > 1 and area under the curve (AUC) > 0.8, criteria sup-
ported by prior proteomic studies [9, 10], to ensure both sensitiv-
ity and specificity. Statistical significance was determined using
the Benjamini-Hochberg procedure to control the FDR < 0.01. For
the final integrated analysis, we applied both criteria (FDR < 0.01
and AUC > 0.8) to identify DEPs with both high statistical signifi-
cance and diagnostic value, and only proteins with FDR-adjusted
P values <0.01 were retained as DEPs. Volcano plots for the quan-
tified proteins expressed significantly differently among groups
were created using the R package ggplot2. Protein enrichment
pathways were analyzed using ingenuity pathway analysis (IPA),
based on the Ingenuity Knowledge Base, biological interaction,
and functional annotation database. A global protein interac-
tome network for the proteins expressed was differentially built
among groups using Cytoscape, and the protein-protein inter-
actions were retrieved from the STRING database.

VALIDATION OF THE POTENTIAL BIOMARKER

We further validated the potential biomarker using enzyme-
linked immunosorbent assay (ELISA) analysis in urine speci-
mens in the validation cohort. The validation cohort was also
derived from the same prospectively enrolled population. ELISA
kits Coagulation factor V (F5, ab137976), Phospholipid transfer
protein (PLTP, ab289907), and alcohol dehydrogenase 1C (ADH1C,
AE23955HU) were from Abcam and Abebio. Hub gene expression
levels were assessed by GraphPad Prism v.6.0, with the receiver
operating characteristic (ROC) plotted to indicate the levels of
hub genes distinguishing the crescentic nephritis.

Statistical analyses

Continuous variables were expressed as mean =+ standard devia-
tion for normally distributed data and as median with interquar-
tile range for nonnormally distributed data. Categorical variables
were presented as frequencies with percentages. Data distribu-
tion was assessed using the Shapiro-Wilk test and visual inspec-
tion of histograms. The Student’s t-test and the Wilcoxon rank
sum test were used to analyze continuous variable differences
among groups. For predictive modeling, we applied a multilayer
perceptron neural network, a feedforward artificial neural net-
work architecture commonly used for classification tasks. The
network consisted of one hidden layer and was trained using
backpropagation with a learning rate of 0.1 and early stopping to
prevent overfitting. The combined dataset from the proteomics
and validation cohorts was randomly split into a training set

(70%) and a validation set (30%). In the validation set, the model’s
predictive validity was evaluated by the ROC curves and mixing
matrices. Cox proportional hazards models were used to assess
predictors of composite adverse renal outcomes, with variables
selected based on clinical or univariate significance (P < .05).
All the statistical analyses were conducted with the R statisti-
cal software (version 3.4.3) and SPSS software (version 20.0; SPSS
Inc., Chicago, IL, USA).

RESULT

Clinical characteristics of patients in the proteomics
cohort

Among 137 participants, 55 were in the proteomics study with
half male and an average age of 53 + 13 years (Table 1,
Supplementary Table S1). The CrGN group contained Type I
(n=1), Type II (n = 3), and Type III (n = 11). AKI group contained
acute interstitial nephritis (AIN, n = 5), acute-on-chronic kidney
disease (n = 4), and LN (n = 1). The nephritis group was IgA-CO
(no crescents, n = 15). AKI group had the highest serum crea-
tinine (SCr, P < .001), and the CrGN group had the highest ery-
throcyte sedimentation rate (ESR, P = .031), and D-dimer level
(P = .003), but with no statistical difference between crescentic
and AKI group in terms of SCr and ESR level.

We recruited 82 patients for the validation study (Table 2)
with an average follow-up time of 11.8 + 14.0 months. The CrGN
group contained Type I (n = 2), Type II (n = 18), and Type III
(n=13). AKI group contained AIN (n = 3) and acute tubular necro-
sis (n = 3). The nephritis group contained IgA (n = 18), membra-
nous nephropathy (n = 11), chronic interstitial nephritis (n = 8),
minimal change disease (n = 3), and LN (n = 3). The CrGN group
had the highest SCr and lowest eGFR among the three groups
(P < .001), but there was no statistical difference between the
CrGN group and the AKI group (P = .077, P = .171). Patients with
AKI had the highest C-reactive protein (CRP) and ESR among the
three groups (P < .001) without a significant difference between
the crescentic and AKI groups. The patients in the CrGN group
had the highest D-dimer level (P < .001) and the worst composite
adverse renal outcomes, especially dialysis (P < .001).

Identification of DEPs in AAV and bioinformatics
analysis

Urine proteomic analysis was performed using the DIA method
to identify potential biomarkers and activated pathways of cres-
centic nephritis. Liquid chromatography with tandem mass
spectrometry analysis identified 5561 proteins (specific peptides
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Table 2: The clinical characteristics of validation cohort.

Variables Total (n = 82) CrGN group (n = 33) AKI group (n = 6) Nephritis group (n =43) P value
Male, n (%) 33 (40.24) 9 (27.27) 2(33.33) 22 (51.16) 122
Age (years) 441+ 16.2 40.5 +18.7 60.3 +£13.2 446 +£13.0 .019
Hemoglobin (g/1) 116.0 (99.3, 137.0) 99.0 (87.0107.0)2 113.5 (105.3115.0)2 135.0 (120.5 145.0) <.001
Albumin (g/1) 34.0 (29.3, 38.0) 31.0 (26.0,33.0)2 35.0 (34.0,38.3)? 37.0 (32.5,40.0) <.001
Scr (umol/l) 149 (73, 259) 281 (198, 430) 229 (145, 244) 74 (61, 125) <.001
eGFR (ml/min/1.73 m?) 38.7 (19.0, 86.9) 18.6 (11.4,27.2)? 25.5(19.2,35.1)2 81.7 (49.2115.0) <.001
CRP (mg/]) 2.33(0.75, 13.28) 5.67 (1.52,22.30) 14.52 (7.46,18.17) 0.78 (0.39,3.34) <.001
ESR (mm/h) 30.0 (11.8, 75.0) 63.0 (29.0,85.5)° 81.0 (67.5,94.5)° 14.0 (6.3,26.0) <.001
24h-Pro (g) 2.24 (0.96, 4.44) 3.83 (1.81,6.74)? 0.78 (0.46,3.53)? 1.60 (0.76,3.30) .003
U-RBC (cells/pl) 60 (11, 341) 323 (44, 826)° 19 (2, 38)* 33 (4,91) <.001
D-dimer (mg/l) 0.71 (0.26, 2.60) 3.37 (1.25,4.96) 0.69 (0.42,2.09)? 0.33(0.17,0.71) <.001
Follow-up time (months) 11.8 +14.0 20.4 £18.5 6.7 £3.1 59+42 <.001
Composite adverse renal outcomes 17 (20.73%) 14 (42.42%) 0 (0.00) 3(6.98%) <.001
Dialysis 2 (13.42%) 11 (33.33%) 0 (0.00) 0 (0.00) <.001
Death 1(1.22%) 1(3.03%) 0 (0.00) 0 (0.00) 382
Worsening renal function 2 (14.63%) 9 (27.27%) 0 (0.00) 3 (6.98%) .037

24h-Pro, 24 h urine protein.

2CrGN group vs. AKI group, hemoglobin P = .087; albumin P = .034; SCr P = .077; eGFR P = .171; CRP P = .309; ESR P = .269; 24h-Pro P = .064; U-RBC P = .028; D-dimer

P =.028.

P values represent overall group differences by Kruskal-Wallis test; pairwise comparisons are annotated with a.

>1), of which 2578 were co-quantified proteins, with the screen-
ing condition that at least two of the quantification values.

The heatmap suggested significant differences between
the CrGN group and health control, the CrGN group and
nephritis control, and the CrGN group and AKI (Fig. 2,
Supplementary Fig. S1). We identified 944, 410, and 129
DEPs (FDR < 0.01) in the CrGN group compared with health
control, nephritis control, and AKI, respectively. After apply-
ing additional diagnostic relevance criteria (AUC > 0.8), 464,
200, and 40 DEPs remained for these comparisons, respec-
tively. IPA pathway showed that neutrophil degranulation and
complement cascade were the high-ranked pathways in the
CrGN group, compared with health control and nephritis (Fig. 3,
Supplementary Fig. S2, Fig. S3). Degradation of beta-catenin by
the destruction complex, salvage pathway of pyrimidine ribonu-
cleotides, and neddylation were signaling pathways in the CrGN
group, compared with the AKI group. The protein-protein inter-
action network of DEPs indicated in the CrGN group with the
activation of complement and coagulation cascades and neu-
trophil degranulation (Supplementary Fig. S4) compared to the
nephritis group, and the activation of NF-kappaB and neddyla-
tion in B cells compared to the AKI group.

Using hierarchical proteomaps based on the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database [11], we visualized
functionally distinct categories within the DEPs (Fig. 4). Every tile
(small polygon) represents one type of protein. Tiles are arranged
and colored according to the hierarchical KEGG pathway maps.
Upregulated proteins were highly involved in complement and
coagulation cascades, glycan metabolism, and ubiquitin label-
ing. The overlap of the DEPs among the CrGN group, nephritis
group, and AKI group led to the identification of eight hub DEPs
(Fig. 5, Supplementary Table S2). After reducing the DEP screen-
ing criterion to [logFC|>1 and an AUC value of >0.8 for predict-
ing crescentic nephritis, F5, PLTP, and ADH1C were selected as
potential signature protein.

Diagnostic efficacy of the urine biomarker

We evaluated the diagnostic efficiency of the urine biomarker
using ELISA analysis in the validation cohort. The CrGN

group had the highest urinary PTLP/urine creatinine (UCr)
and F5/UCr, without statistical significance in ADH1C/UCr
(Fig. 6). Subgroup analysis stratified by CrGN type showed that
compared with Type III, Type II had higher PLTP/UCr levels
(6249.03 + 1815.54 vs. 1781.65 + 482.15 pg/mmol, P = .028) and
ADH1C/UCr (129.96 + 41.52 vs. 35.26 + 8.06, P = .038 ng/mmol),
while no statistical difference in F5/UCr levels (P = .398). Scat-
ter plots revealed significant positive correlations between cres-
centic percentage and urinary PLTP/UCr (r = 0.36, P < .001),
FS/UCr (r = 0.40, P < .001), and SCr (r = 0.60, P < .001)
(Supplementary Fig. S5). The AUC values PTLP/UCr and F5/UCr
for predicting CrGN were 0.831 (0.738-0.924, P < .001) and
0.780 (0.679-0.881, P < .001). Combining PLTP/UCr and F5/UCr
improved diagnostic performance, yielding an AUC of 0.839
(0.749-0.928, P < .001). PLTP/UCr > 620.76 pg/mmol (78.8%
sensitivity and 81.6% specificity)and F5/UCr > 20.19 pg/mmol
(78.8% sensitivity and 67.3% specificity) can predict crescen-
tic nephritis. Additionally, the AUC value of F5/UCr for pre-
dicting composite adverse renal outcomes was 1.01 (P = .043,
Supplementary Table S3).

Neural network analysis

By neural network analysis, we observed that time interval from
onset to diagnosis, hemoglobin, albumin, maximum creatinine
level during hospitalization, urinary red blood cells (U-RBC), and
urine F5/UCr ratio could predict the CrGN with an AUC of 0.984
on the training set (Supplementary Fig. S6) and 0.947 on the val-
idation set. The accuracy of the confusion matrix reaches 95.5%
on the training set and 72.7% on the validation set.

DISCUSSION

In this study, by DIA urine proteomic analysis, we identified the
complement and coagulation cascades and neddylation played
a crucial role in the CrGN with good prediction effect of F5 and
PLTP, and provided potential non-invasive biomarkers in the di-
agnosis and management of CrGN, especially in cases where re-
nal biopsy is not feasible or advisable.
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Figure 2: Proteomic differentiation. Volcano plot (a) and heatmap (b) comparing CrGN vs. non-crescentic nephritis groups. Volcano plot (c) and heatmap (d) comparing
CrGN versus AKI groups. Red and blue points in volcano plots denote significantly upregulated or downregulated proteins (|log,FC| >1, FDR < 0.01). Heatmap rows
represent proteins, columns represent individual samples; red and blue indicate higher and lower expression relative to the mean.

Clinically, CrGN is characterized by a nephritic syndrome
rapidly progressing to ESRD and needs urgent therapy and the
prognosis depending on the timeline of diagnosis [12]. The
golden diagnosis standard is still the pathological diagnosis not
available for emergency patients and aged patients. Tradition-
ally, clinicians identify CrGN based on the characteristic features
of rapid deterioration of renal function over a short period, ac-
companied by oliguria, gross hematuria, and anemia [12], more
pronounced hypoalbuminemia, anemia. Recently, studies have
attempted to explore more precise biomarkers for CrGN through
minimally invasive approaches, such as FSP1 [4], urine solu-
ble CD163 [13], and monocyte chemoattractant protein-1 [14].
However, urinary FSP1 is also in patients with glomerular in-
jury caused by podocyte detachment without crescent forma-
tion, while urine soluble CD163 was not better than albumin

as a marker for assessing glomerular barrier dysfunction [13].
Monocyte chemoattractant protein-1 and RANTES were associ-
ated with inflammation but with lower AUCs and limited mech-
anistic links to crescent formation [14]. Thus, it is still essential
to identify new biomarkers for urgent clinical needs based on
the general pathways and urgent clinical needs for applicable
predictive models for CrGN and the prognosis.

This study identified that neutrophil degranulation, com-
plement, coagulation cascade, and neddylation were the
high-ranked pathways in the CrGN group. This finding is consis-
tent with the mechanism studies of the CrGN published before
that showed circulating cells, inflammatory mediators, and
plasma proteins cross the fissures when severe inflammatory
injury results in physical damage to the glomerular capil-
lary wall, GN basement membrane, and renal capsule in the
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Figure 6: Biomarker validation. ELISA validation of urinary biomarkers normalized to creatinine (UCr). (a) PLTP/UCr and (b) F5/UCr levels in CrGN versus nephritis
controls. ROC curves show diagnostic performance: PLTP/UCr AUC = 0.831 (95% CI: 0.738-0.924), F5/UCr AUC = 0.780 (0.679-0.881). Optimal cutoffs: PLTP/UCr > 620.76
pg/mmol (78.8% sens, 81.6% spec), F5/UCr > 20.19 pg/mmol (78.8% sens, 67.3% spec). Crescentic, crescentic nephritis group; Control, nephritis control group. ROC curves
show diagnostic performance for predicting Crescentic Glomerulonephritis (c) PLTP/UCr AUC = 0.831 (95% CI: 0.738-0.924), F5/UCr AUC = 0.780 (0.679-0.881). Optimal
cutoffs: PLTP/UCr >620.76 pg/mmol (78.8% sens, 81.6% spec), F5/UCr >20.19 pg/mmol (78.8% sens, 67.3% spec). Diagnostic performance for predicting composite adverse

renal outcomes (d) PLTP/UCr AUC = 0.699, F5/UCr AUC = 0.648.

“general pathway” of crescent formation [15]. It also provides a
mechanism base for the new biomarkers and the diagnosis and
prognosis prediction.

We first discovered that urine F5/UCr and PLTP/UCr were
promising indicators for predicting CrGN with high sensitivity
and specificity. F5 is a crucial component of the coagulation
cascade and is associated with GNs. In the rat model of mesan-
gioproliferative GN, coagulation in the mesangial area promotes
extracellular matrix accumulation through F5 expression [16].
Elevated urinary levels of F5 in CrGN patients might indicate the
disruption of glomerular capillary integrity and active glomeru-
lar inflammation. PLTP transfers amphiphilic lipids between
circulating lipoproteins, cells, and tissues associated with the
immuno-response and inflammatory processes [17]. They were
common pathogenesis of the causes of CrGN, such as AAV,
anti-GBM disease, and lupus nephritis. In an RNA sequencing
study of chronic kidney disease, PLTP was a novel biomarker of

kidney fibrosis [18]. While F5 and PLTP emerged as consistent
biomarkers of CrGN, their roles in disease pathogenesis remain
speculative. The associations observed in this study should be
considered hypothesis-generating, and functional studies are
needed to evaluate their mechanistic relevance.

The machine learning model demonstrates significant
discriminative ability in predicting CrGN in the training
(AUC = 0.984) and validation (AUC = 0.947) cohorts. It sug-
gests that the model can effectively differentiate between cases
of CrGN and other causes of AKI, which provides evidence
for urgent therapy when pathologic diagnosis is unavailable.
The model’s strength lies in the cooperation of clinically rele-
vant features, including time intervals from onset to diagnosis,
hemoglobin, albumin, maximum creatinine level during hospi-
talization, U-RBC, and urine F5/UCr ratio. In the IgAN, urinary
protein, U-RBC, eGFR <60 ml/min/1.73 m?, and serum IgA/C3 ra-
tio have been reported as independent risk factors for crescent

GZ0Z JaquianoN €| uo 1sanb Aq y8E00£8/08ZeIS/ L L/8L/3lo1e/Bo/woo"dno-ojwapese//:sdny woly papeojumoq



10 | S.Zhangetal.

formation [19] with accuracies in training (95.5%) and validation
(72.7%), suggests some degree of overfitting. Further validation
of external datasets and prospective studies would be necessary
to ensure robustness and generalizability.

These urinary biomarkers hold promise for a strategy of
non-invasive diagnosis and monitoring of CrGN, particularly
in cases where renal biopsy is contraindicated or unavail-
able. Furthermore, these biomarkers may provide insights into
the pathogenic mechanisms driving the rapid progression of
glomerular nephritis, then develop potential targeted therapeu-
tic strategies for the rare and severe renal disease in the clinical
setting. To expand the sample size and improve the represen-
tativeness of the validation cohort, patients were consecutively
enrolled over a 5-year period in a retrospective-prospective man-
ner. Therefore, strict age matching between the training and
validation cohorts was not implemented. The observed differ-
ences in age distribution between cohorts likely reflect un-
derlying heterogeneity in clinical presentation and enhance
the robustness and external validity of the identified urinary
proteomic biomarkers. Future studies with larger cohorts are
warranted to dissect the differential proteomic signatures be-
tween inflammation-associated injury and non-inflammatory
AKI, which may further refine biomarker specificity. Another
limitation of our study is the predominance of Type III CrGN,
primarily AAV, in both the training and validation cohorts. This
imbalance may limit the generalizability of our findings to other
CrGN subtypes, such as Type I (anti-GBM disease) and Type II
(immune-complex mediated CrGN). Future studies should aim
to include a broader distribution of CrGN types to validate the
biomarker performance across the full disease spectrum.

CONCLUSION

By the non-invasive urine proteomics, the new biomarkers
F5/UCr and PLTP/UCr shed light on identifying the CrGN patient.
Complement, coagulation cascades, and neddylation might be
critical in activating the crescentic nephritis. A newly con-
structed neural network model to predict CrGN could promote
clinical decision-making.
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