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Abstract 38 

Background & Aims: Microvascular invasion (MVI) is a major determinant of poor 39 

prognosis in hepatocellular carcinoma (HCC). However, reliable noninvasive 40 

biomarkers for the preoperative evaluation and diagnosis of MVI are urgently needed 41 

in clinical practice.  42 

Methods: Plasma samples were collected from 160 HCC patients (80 MVI-positive 43 

and 80 MVI-negative patients) from four medical centers. Plasma proteomic profiling 44 

was obtained using data-independent acquisition mass spectrometry (DIA-MS). 45 

Principal component analysis and differential protein abundance analysis were used to 46 

assess the proteomic changes between the two groups of patients. Protein biomarker 47 

candidates were further quantitatively validated by enzyme-linked immunosorbent 48 

assay (ELISA). 49 

Results:  Proteomic analysis of 50 HCC patients (25 MVI-positive and 25 MVI-50 

negative) identified three plasma protein biomarkers (TALDO1, PDIA3, and PGK1) 51 

which are significantly upregulated in MVI-positive patients (FDR-adjusted p< 0.05) 52 

and subsequently were cross-validated by ELISA. A machine learning-based Plasma 53 

pRotein MVI risk Model (PRIM) was developed for the preoperative prediction of 54 

MVI. The PRIM model demonstrated excellent discriminatory ability, with areas under 55 

the receiver operating characteristic curve (AUROC) values ranging from 0.78 to 0.99 56 

across three independent cohorts. Single-cell RNA sequencing of five HCC tumors 57 

provided a cell type-resolved atlas of biomarker expression, showing their predominant 58 

presence in malignant cells and macrophages within the MVI+ tumor 59 

microenvironment compared to MVI- tumors.  60 
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Conclusions: This study provides a comprehensive analysis of the plasma proteomic 61 

landscape in HCC and presents a promising blood-based tool for preoperative MVI risk 62 

stratification.  63 
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Impact and implications 65 

This study highlights the transformative potential of plasma proteomic profiling in 66 

improving the preoperative prediction of microvascular invasion in hepatocellular 67 

carcinoma. By integrating data-independent acquisition mass spectrometry and with 68 

machine learning, we identified three plasma protein biomarkers (TALDO1, PDIA3, 69 

and PGK1) and developed the Plasma pRotein MVI risk Model (PRIM), which 70 

demonstrated robust diagnostic accuracy across multicenter validation cohorts. These 71 

findings pave the way for preoperative risk stratification and personalized therapeutic 72 

strategies in HCC management. 73 
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Graphical abstract 75 
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Introduction 77 

Hepatocellular carcinoma (HCC) accounts for approximately 90% of primary 78 

liver cancers and remains one of the leading causes of cancer-related mortality 79 

worldwide [1]. Microvascular invasion (MVI) is a crucial pathological feature 80 

characterized by the infiltration of tumor cells into adjacent microvessels [2, 3]. MVI 81 

is known to be strongly associated with aggressive disease progression, increased 82 

recurrence and metastasis, and poor survival rates following surgery or liver 83 

transplantation [3]. Early preoperative identification of MVI enables more accurate risk 84 

stratification and more personalized treatment strategies, which could significantly 85 

improve patient survival [4-6]. However, the current diagnostic methods for MVI rely 86 

predominantly on postoperative histopathological examination, highlighting the urgent 87 

need for reliable and non-invasive biomarkers that can accurately predict the presence 88 

of MVI preoperatively. 89 

Plasma proteomics has emerged as a powerful strategy for biomarker discovery, 90 

offering a minimally invasive means into systemic pathophysiological changes. The 91 

proteins circulating in the plasma reflect the underlying biological processes, and their 92 

levels can be modulated by tumor presence, stage, and even the dynamics of the tumor 93 

microenvironment (TME). Recent advances in mass spectrometry (MS) and data-94 

independent acquisition (DIA) workflows have enabled deep proteome profiling, as 95 

demonstrated in studies identifying panels of proteins associated with various cancer 96 

types [7-15]. In HCC, previous plasma proteomic efforts have focused primarily on 97 

HCC diagnosis, but have not specifically addressed biomarkers for MVI [16-18].  98 

In this study, we conducted a multi-stage, multi-center investigation of plasma 99 

proteome dynamics in HCC patients with MVI. By integrating DIA-MS proteomics, 100 

enzyme-linked immunosorbent assay (ELISA), and machine learning, we identified 101 
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and cross-validated a three-protein panel that could serve as a preoperative biomarker 102 

signature for MVI risk stratification. 103 

Materials and Methods 104 

Study population and study design 105 

This multi-center case-control study was conducted between January 2023 and 106 

December 2024 across four hospitals in China: the First Affiliated Hospital of Harbin 107 

Medical University (FAHHMU), Harbin Medical University Cancer Hospital 108 

(HMUCH), the Second Norman Bethune Hospital of Jilin University (JU), and the First 109 

Hospital of China Medical University (CMU). The study was approved by the Ethics 110 

Committees of each participating institution, and written informed consent was 111 

obtained from all participants prior to any study-related procedures. All procedures 112 

adhered to the principles of the Declaration of Helsinki.  113 

The inclusion criteria were as follows: (1) Imaging examinations demonstrating a 114 

solitary lesion; (2) Normal or well-compensated liver function, corresponding to Child-115 

Pugh grades A-B; (3) Adequate tolerance for curative hepatic resection; (4) 116 

Postoperative pathological diagnosis confirming HCC, with the grading of MVI 117 

confirmed; (5) Availability of comprehensive preoperative imaging data and related 118 

laboratory test results; (6) Voluntary participation in the study, with signed informed 119 

consent and agreement to follow-up and data collection. The exclusion criteria 120 

included: (1) Prior to surgery, any systemic anti-HCC treatments (e.g., liver 121 

transplantation, transarterial chemoembolization, radiotherapy, chemotherapy, 122 

molecular targeted therapy, or immunotherapy); (2) Current treatment with medications 123 

known to potentially cause liver injury; (3) Severe liver dysfunction, decompensated 124 

cirrhosis, or active hepatitis; (4) A history or concurrent occurrence of ruptured and 125 

bleeding HCC; (5) A history or coexistence of other malignancies; (6) Severe diseases 126 
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affecting critical organs such as the heart, lungs, kidneys, brain, or blood system; (7) 127 

Comorbid autoimmune diseases, metabolic disorders, or severe neurological or 128 

psychiatric conditions; (8) Substance abuse.  129 

Patients were consecutively recruited at each participating center during the study 130 

period to ensure representative sampling and minimize selection bias. All HCC patients 131 

who met the inclusion criteria and had no exclusion criteria were evaluated. After 132 

pathological confirmation of HCC and MVI status assessment, patients were classified 133 

as cases (MVI-positive) or controls (MVI-negative). The consecutive enrollment 134 

continued at each center until approximately 25-30 cases and 25-30 controls were 135 

obtained from each hospital, resulting in a total of 160 patients across all four centers. 136 

This recruitment strategy ensured that the sample was representative of the general 137 

HCC patient population undergoing surgical resection at each institution, avoiding 138 

selective sampling that might introduce bias. All eligible patients were approached for 139 

study participation. 140 

Based on this recruitment process, the study cohorts were organized as follows: 141 

(1) the discovery cohort included 50 plasma samples (25 MVI+ and 25 MVI-) from the 142 

FAHHMU cohort. (2) Validation cohort 1 consisting of 60 HCC patients (30 MVI+ and 143 

30 MVI-) from the HMUCH cohort; (3) Validation cohort 2 composing of 50 patients 144 

(25 MVI+ and 25 MVI-) from the JU-CMU cohort. 145 

Plasma sample preparation 146 

All participants underwent radical surgical resection for HCC, and fasting blood 147 

samples were collected in the early morning prior to surgery into EDTA-containing 148 

tubes. The samples were then centrifuged at 1000×g for 15 minutes at 4°C and the 149 

resulting plasma supernatant was stored at -80°C for further analysis. Postoperative 150 

MVI status was independently assessed and pathologically confirmed by three 151 
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experienced pathologists.  152 

Plasma samples were transferred to fresh centrifuge tubes, and magnetic 153 

nanomaterials (PTM-00F13303, PTM Bio) were added. The samples were incubated at 154 

1200 rpm and 37°C for one hour. After incubation, the magnetic beads were washed 155 

three times with washing buffer. Next, 70 μL of enzyme digestion buffer was added to 156 

the beads, and the mixture was heated at 95°C for 10 minutes, allowing it to cool to 157 

room temperature. Trypsin was added to a final concentration of 20 ng/μL for overnight 158 

digestion. The digestion solution was reduced with 5 mM dithiothreitol (DTT) at 56°C 159 

for 30 minutes, followed by alkylation with 11 mM iodoacetamide (IAM) for 15 160 

minutes at room temperature in the dark. The resulting peptides were desalted using 161 

C18 ZipTips (Millipore) according to the manufacturer’s instructions and then 162 

lyophilized for subsequent MS analysis. 163 

LC-MS/MS analysis 164 

For MS analysis, tryptic peptides were dissolved in solvent A and loaded onto a 165 

homemade reversed-phase analytical column (15 cm length, 100 μm i.d.). The mobile 166 

phase consisted of solvent A (0.1% formic acid in water) and solvent B (0.1% formic 167 

acid, 80% acetonitrile in water). Peptides were separated using the following gradient: 168 

0-1.6 min, 4%-22.5% B; 1.6-2.0 min, 22.5%-35% B; 2.0-2.6 min, 35%-55% B; 2.6-2.7 169 

min, 55%-99% B; 2.7-6.8 min, 99% B; 6.8-7.6 min, 99% B, at a constant flow rate of 170 

300 nL/min using a Vanquish Neo UPLC system (ThermoFisher Scientific). The 171 

separated peptides were analyzed using an Orbitrap Astral mass spectrometer with a 172 

nano-electrospray ion source and applying an electrospray voltage of 1900 V. Full MS 173 

scans were acquired in the Orbitrap detector with a resolution of 240,000, scanning the 174 

mass-to-charge ratio (m/z) range of 380–980. MS/MS scans were conducted in the 175 

Astral detector with a resolution of 80,000, using a fixed first mass of 150.0 m/z and 176 
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high-energy collision-induced dissociation (HCD) fragmentation at a normalized 177 

collision energy (NCE) of 25%. The automatic gain control (AGC) target was set at 178 

500%, with a maximum injection time of 3ms.  179 

DIA data were processed using the DIA-NN (v1.8), with tandem mass spectra 180 

searched against the Homo sapiens reference database 181 

(Homo_sapiens_9606_SP_20231220.fasta) concatenated with a reverse decoy 182 

database. Data analysis was performed with Trypsin/P as the cleavage enzyme, 183 

allowing one missed cleavage, and fixed carbamidomethylation of cysteine and N-184 

terminal methionine excision. A false discovery rate (FDR) of <1% was used. 185 

Missing value imputation 186 

Proteins detected in fewer than 25% of the samples were excluded from further 187 

analysis to ensure that only reliable, widely detectable proteins were included. For the 188 

remaining proteins, missing values were imputed using the k-nearest neighbors (KNN) 189 

algorithm to generate a more robust and accurate dataset for subsequent analyses [19]. 190 

Missing data imputation was performed using the impute R package (version 1.62.0), 191 

with default parameters as recommended by the package documentation. This KNN 192 

algorithm identifies the k most similar samples (neighbors) to each incomplete sample 193 

based on non-missing features, with similarity measured by Euclidean distance.  The 194 

missing values are then imputed as a weighted average of the corresponding values 195 

from these neighbors, with the weights inversely proportional to the distance between 196 

the target sample and its neighbors. By default, the number of neighbors (k) was set to 197 

10. Before calculating the distances, each feature (row) is standardized to zero mean 198 

and unit variance to ensure that features with larger dynamic ranges do not 199 

disproportionately influence neighbor selection. The imputation process is performed 200 

iteratively, with the algorithm continuing until convergence or up to a maximum of 201 
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1000 iterations.  202 

Differential abundance analysis 203 

Differential protein abundance between MVI+ and MVI- patients was assessed 204 

using the Mann-Whitney U test. Proteins that were significantly upregulated or 205 

downregulated in the MVI+ group compared to the MVI- group were defined as 206 

differentially abundant with a p-value < 0.05 and a log2 fold change (FC) greater than 207 

0.58 (upregulated) or less than -0.58 (downregulated).  208 

Weighted gene co-expression network analysis (WGCNA) 209 

WGCNA analysis was used to identify co-regulated protein modules in an 210 

unsupervised manner [20]. A signed gene co-expression network was constructed with 211 

a soft-thresholding power of 3 to achieve a scale-free topology model fit (R² = 0.8). 212 

Groups of co-regulated genes (modules) were detected using the blockwiseModules 213 

function, with a minimum module size set to 20. The robustness of the identified protein 214 

modules was evaluated by applying t-distributed stochastic neighbor embedding (t-215 

SNE) to the proteins in the top 30% based on module membership (kME) values within 216 

each module using the Rtsne package. 217 

Functional enrichment analysis 218 

Functional enrichment analysis was performed to identify 219 

enriched biological processes for the group of proteins, using the clusterProfiler R 220 

package (v3.16.1) [21] and ClueGO [22], with an adjusted p-value <0.05.  221 

ELISA detection 222 

 The plasma concentrations of TALDO1, HSPA8, HSPA1A, PDIA3, PGK1, IDH1, 223 

PGM3 and HSPA6 were quantified using commercially available ELISA kits 224 

(TALDO1, HSPA8, HSPA1A, PDIA3, PGK1 and IDH1: JONLNBIO; PGM3: 225 

ABEBIO; HSPA6: ABCLONAL.) The working standards, biotin-conjugated antibody, 226 
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streptavidin-HRP, and wash buffer were prepared in accordance with the manufacturer's 227 

instructions, and the test samples were appropriately diluted. A 100 µL aliquot of either 228 

the standards or the test samples were added to each well and incubated at 37°C for 2 229 

hours. After incubation, the wells were washed three times. Next, 100 µL of the working 230 

biotin-conjugated antibody was added, and the mixture was incubated for 1 hour at 231 

37°C, followed by three additional wash cycles. Then, 100 µL of working streptavidin-232 

HRP was added, and the mixture was incubated for 30 minutes at 37°C, followed by 233 

five wash cycles. Subsequently, 90 µL of substrate mixture was added, and the reaction 234 

was incubated for 20 minutes at 37°C in the dark. Finally, 50 µL of Stop Solution was 235 

added to terminate the reaction, and absorbance was measured at 450 nm within 5 236 

minutes. 237 

Machine learning model development 238 

To construct a predictive model for MVI status (MVI+ or MVI-), we developed 239 

an ensemble KNN model to estimate the probability of MVI risk using ELISA data. 240 

The ensemble model integrates predictions from six base KNN models with K-values 241 

of 1, 3, 5, 7, 9, and 11. The final prediction score is obtained by averaging the outputs 242 

from all six models, thereby balancing local sensitivity and global stability.  This 243 

design addresses the limitations of single K-value models, where small K values (e.g., 244 

K=1) may overfit noise, and larger K values (e.g., K=11) may oversimplify the decision 245 

boundaries.  246 

Preprocessing and analysis of scRNA-seq data 247 

The scRNA-seq data from 5 HCC samples, including 3 MVI+ tumor samples, and 248 

2 MVI- tumor samples, were obtained from our previous study [23]. The Seurat 249 

workflow (v4.0) with default parameters was used for downstream analyses[24]. 250 

Quality control was performed to filter out cells with fewer than 500 detected genes or 251 
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those with more than 30% mitochondrial gene expression. Data normalization was 252 

carried out using scTransform, with regression for mitochondrial gene expression, 253 

UMIs and detected genes. Dimensionality reduction was performed using principal 254 

component analysis (PCA) in the seurat, and the top 3000 highly variable genes were 255 

selected for downstream analysis. UMAP was used for visualization using the top 30 256 

principal components. Cell clustering was performed using the Louvain algorithm with 257 

a resolution parameter of 0.3, and cell identities were assigned based on the clustering 258 

categories from our previous study [23]. 259 

Statistical analysis 260 

All statistical analyses were performed using R (v4.4.1). Principal component 261 

analysis (PCA) was performed using the FactoMineR package [25]. Complete 262 

clustering was performed using the Euclidean distance on the group average protein 263 

quantitation data. The discriminatory ability of the model was assessed using receiver 264 

operating characteristic (ROC) curves, and area under the curve (AUC) values. 265 

Additionally, precision-recall (PR) curves were plotted to evaluate model performance 266 

in detecting positive cases using the PRROC package [26]. The diagnostic performance 267 

of the model was evaluated by calculating key performance metrics using the cvms 268 

package (https://github.com/LudvigOlsen/cvms), including sensitivity, specificity, 269 

positive predictive value (PPV), negative predictive value (NPV), and F1 score. 270 

Decision curve analysis (DCA) was conducted to assess the net clinical benefit of the 271 

model at varying threshold probabilities using the dcurves package [27]. All statistical 272 

tests were two-sided, and statistical significance was considered when p-value < 0.05.  273 

Results 274 

Plasma proteomic landscape of MVI+ and MVI- HCC 275 

A detailed description of the study population and design is provided in Figure 1. 276 
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Plasma samples from 50 HCC patients in the discovery cohort were subjected to 277 

quantitative proteomic analysis using the DIA strategy. DIA-MS quantified 24,994 278 

peptides and 3,107 proteins across all plasma samples (Figure 2A), with an average of 279 

2,453 and 2,508 proteins detected in MVI+ and MVI- plasma samples, respectively 280 

(Figure 2B). No outliers were observed, ensuring the suitability of all samples for 281 

further analysis. Among the identified proteins, 1,216 were detected with 100% 282 

completeness, 2,162 with 75% completeness, and 2,603 with 50% completeness 283 

(Figure 2C). As the sample size increased, the number of identified proteins plateaued, 284 

indicating deep proteomic coverage and stable protein detection (Figure 2D). 285 

Additionally, the number of identified protein was not influenced by age or gender 286 

(Supplementary Figure 1A).  287 

Protein intensities spanned eight orders of magnitude, with the top 10 most 288 

abundant proteins accounting for 43.84% and 42.66% of total plasma protein 289 

abundance in the MVI+ and MVI- groups, respectively (Figure 2E). No significant 290 

differences in protein abundance were observed between the MVI+ and MVI- groups, 291 

and this consistency was maintained across different age and gender groups (Figure 2F, 292 

Supplementary Figure 1B and C). According to the Human Protein Atlas, the majority 293 

of proteins were localized to the cytoplasm (28%) and the extracellular space (27.45%) 294 

(Figure 2G). Focusing on secreted proteins, 899 of the identified proteins were 295 

classified as secreted, with 42.38% secreted into the blood, 19.13% into intracellular 296 

and membrane compartments, and 12.1% into the extracellular matrix (Figure 2H). The 297 

correlation among plasma samples was consistently above 0.90, indicating high 298 

repeatability across the samples and stability of the MS platform (Supplementary 299 

Figure 1D). 300 

MVI-relevant functional protein module 301 
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To identify clinically relevant functional protein modules associated with MVI, 302 

we performed WGCNA on the plasma proteomic data. We began by conducting a 303 

sample clustering analysis to assess variations among the 50 samples, confirming the 304 

absence of outliers and enabling the inclusion of all samples in subsequent analyses 305 

(Supplementary Figure 2A). The network was constructed with a power of 3, achieving 306 

a scale-free topology (Figure 3A). A total of 14 protein functional modules were 307 

identified, with sizes ranging from 28 to 530 proteins (Figure 3B). These modules could 308 

also be identified independently of the WGCNA algorithm using t-SNE analysis, which 309 

demonstrated the robustness of the protein communities identified by the WGCNA 310 

algorithm (Supplementary Figure 2B). Biological functions of 14 protein modules were 311 

annotated using the GO functional enrichment analysis (Figure 3C). To explore whether 312 

any of the co-expression modules was specifically related to MVI, we correlated the 313 

module eigenproteins (MEs)—the first principal component of each module’s protein 314 

expression—to the MVI phenotype across the samples. All p-values were adjusted for 315 

multiple testing using the Benjamini-Hochberg procedure to control the false discovery 316 

rate (FDR). After FDR correction (q < 0.05), we observed that only one module, ME09, 317 

was significantly correlated with MVI. The biological functions associated with ME09 318 

were primarily characterized by lipid metabolic processes (Figure 3D). To further 319 

validate the consistency and robustness of this correlation, we examined the differential 320 

expression patterns of module MEs across MVI+ and MVI- subgroups. As expected, 321 

ME09, which was significantly correlated with MVI, showed downregulation in MVI+ 322 

patients when mapped onto the WGCNA network (Figure 3E).  323 

Identification of plasma proteomic biomarkers for MVI 324 

PCA analysis of the plasma proteomics data revealed distinct clustering between 325 

MVI+ and MVI- patients, suggesting underlying differences in protein expression 326 
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patterns and biological processes (Figure 4A). To further explore the molecular features 327 

associated with MVI, we conducted differential protein expression analysis, and 328 

identified 83 differentially expressed proteins (DEPs) between MVI+ and MVI- 329 

patients. Among these, 46 proteins were significantly upregulated, and 37 were 330 

downregulated in the MVI+ patients (Figure 4B). The differential abundance of these 331 

83 DEPs effectively distinguished between the MVI+ and MVI- patients (Figure 4C). 332 

GO enrichment analysis revealed that upregulated proteins were significantly involved 333 

in ATP metabolism, immunoglobulin mediated immune response, and protein refolding 334 

(Figure 4D), while downregulated proteins were associated with regulation of lipase 335 

activity, leukocyte chemotaxis, and ribonucleoprotein complex biogenesis (Figure 4E).  336 

To identify potential protein biomarkers for MVI, we selected the top eight 337 

upregulated proteins based on stringent criteria (FDR < 0.05, log2FC > 0.58). To 338 

validate the stability and reproducibility of these candidates, we performed ELISA on 339 

plasma samples from the same cohort (Figure 4G). Among the eight candidates, the 340 

levels of three proteins (TALDO1, PDIA3, and PGK1) measured by ELISA showed 341 

consistent elevation in MVI+ patients, aligning with the trends observed in the DIA-342 

MS results (Figure 4F and G, and Supplementary Table 1). The elevated plasma levels 343 

of TALDO1, PDIA3, and PGK1 in MVI+ patients compared to MVI- patients suggest 344 

their relevance with MVI and highlights its potential as robust biomarkers for assessing 345 

MVI status in HCC. 346 

Plasma protein-based machine learning model for preoperative MVI prediction 347 

To evaluate the clinical utility of the identified protein biomarkers in predicting 348 

MVI, we developed a machine learning-based Plasma pRotein MVI risk Model 349 

(PRIM), selected based on systematic algorithm comparison (Supplementary Figure 350 

S3), which integrates the expression levels of three protein biomarkers measured by 351 
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ELISA in the discovery cohort. PRIM was constructed using an ensemble model that 352 

combines predictions from six base KNN models with values of 1, 3, 5, 7, 9, and 11 353 

(Supplementary Figure 4A). PRIM achieved an AUC of 0.99 (95% CI:0.98-1.00) in 354 

distinguishing between MVI+ and MVI- patients, with both specificity and sensitivity 355 

at 96%, outperforming the individual biomarkers (AUCs <0.70) (Figure 5A, 356 

Supplementary Figure 4B and E). MVI+ patients revealed significantly higher PRIM 357 

risk scores compared to MVI- patients (Figure 5B). 358 

Next, we assessed the effectiveness and robustness of PRIM by evaluating its 359 

performance on the two independent validation cohorts using the ELISA-measured 360 

protein levels (Supplementary Table 2 and Supplementary Table 3). PRIM achieved 361 

consistent high performance in discriminating MVI+ patients from MVI- patients, with 362 

AUCs of 0.82 (95% CI:0.71-0.93) and 0.78 (95% CI:0.65-0.91) in the HMUCH and 363 

JU-CMU validation cohorts, respectively (Figure 5C and E, Supplementary Figure 4F 364 

and G). Consistently, the performance of PRIM was superior to that of the individual 365 

protein biomarkers. The PRIM risk scores were significantly higher in the MVI+ 366 

patients than in the MVI-patients (Figure 5D and F, Supplementary Figure 4C and D). 367 

The expression levels of the three proteins (TALDO1, PDIA3 and PGK1) in MVI+ 368 

patients were significantly or marginally significantly higher than in MVI-patients 369 

(Figure 5D and F). Additionally, PRIM maintained robust performance even in patients 370 

with small tumors (<3 cm) (Figure S5A). In terms of etiology-specific evaluation, 371 

PRIM performed well in both HBV-related and non-HBV/non-HCV-related patients, as 372 

well as in HCV-related cases, demonstrating its broad applicability across different 373 

disease backgrounds (Figure S5B-D). Notably, PRIM consistently outperformed 374 

conventional clinical predictors, including tumor size, tumor grade, and serum AFP 375 

levels, highlighting its superior diagnostic value (Supplementary Figure S6). 376 
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Furthermore, the DCA curve demonstrated that PRIM achieved higher net benefits for 377 

distinguishing MVI status in HCC across a range of threshold probabilities in all three 378 

cohorts (Figure 5G). These results confirm the robust and high diagnostic performance 379 

of the PRIM for predicting MVI status. 380 

ScRNA-seq analysis reveals cell type- specific expression of MVI biomarkers 381 

To elucidate the cellular origins and microenvironmental dynamics of the identified 382 

MVI biomarkers (TALDO1, PDIA3, PGK1), we performed scRNA-seq analysis on 383 

tumor tissues surgically from five HCC patients (three MVI+, two MVI-). After quality 384 

control, a total of 22,679 cells were analyzed, including 9,975 cells from MVI+ patients 385 

and 12,704 from MVI- patients. Dimensionality reduction and clustering identified 10 386 

major cell types according to canonical marker genes (Figure 6A and Supplementary 387 

Figure 7). Consistent with our plasma proteomic findings, PDIA3, TALDO1, and 388 

PGK1 showed significantly elevated expression in MVI+ tumors compared to MVI- 389 

tumors (Figure 6B). Strikingly, cell type-specific analysis revealed that these 390 

biomarkers were predominantly enriched in malignant cells and macrophages within 391 

the MVI+ tumor microenvironment (Figure 6C). The concordance between plasma 392 

proteomic elevations of TALDO1/PDIA3/PGK1 and their transcriptional upregulation 393 

in MVI+ TME cell populations suggests a bidirectional crosstalk between systemic 394 

circulation and local tumor biology. These findings align with emerging paradigms in 395 

HCC biology, where metabolic symbiosis between tumor cells and TAMs fosters 396 

invasive phenotypes [28]. 397 

Discussion 398 

MVI is a critical determinant of HCC prognosis, significantly influencing post-399 

treatment recurrence rates and overall survival following curative interventions such as 400 

surgical resection or radiofrequency ablation. Patients with MVI are at a higher risk of 401 
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the cancer recurrence after treatment, making MVI a key factor that oncologists 402 

consider when planning post-treatment surveillance and management strategies. 403 

Despite its clinical significance, current methods for assessing MVI remain limited to 404 

postoperative histopathological evaluation, which restricts the ability to perform 405 

preoperative risk stratification. In this study, we comprehensively investigated the 406 

plasma proteomic landscape of HCC patients with and without MVI and successfully 407 

identified distinct plasma proteomic alterations associated with MVI, which offer 408 

promising biomarkers for the pretreatment prediction of MVI. To date, this is the largest 409 

and most comprehensive plasma proteomic study to determine noninvasive biomarkers 410 

for MVI. 411 

Unlike tissue biopsy, which is limited by sampling bias and invasiveness, our DIA-412 

MS-based quantitative proteomic profiling achieved comprehensive proteome 413 

coverage, identifying over 2,000 proteins with high reproducibility and stability across 414 

plasma samples. The unbiased nature of this approach enabled the discovery of novel 415 

biomarkers, including TALDO1, PDIA3, and PGK1. Importantly, we cross-validated 416 

these biomarkers by measuring their levels in plasma by ELISA, confirming their 417 

detectability in raw biological fluids, ensuring their potential translation into clinics, as 418 

ELISA is a cost-effective and widely available platform in routine diagnostics. To 419 

translate these findings into clinical practice, we integrated TALDO1, PDIA3, and 420 

PGK1 into PRIM, a plasma protein-based diagnostic tool that demonstrated high 421 

diagnostic performance across multiple cohorts. By enabling accurate preoperative 422 

prediction of MVI, PRIM offers a non-invasive alternative to histopathological 423 

diagnosis, facilitating personalized treatment decisions and potentially improving 424 

outcomes for HCC patients. 425 

Furthermore, the functional roles of these biomarkers may provide mechanistic 426 
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insights into MVI pathogenesis. PDIA3, a thiol-oxidoreductase chaperone, plays a 427 

multifaceted role in cancer biology, including protein folding and immune regulation 428 

[29, 30]. Its elevated expression in HCC, as observed in our study and supported by 429 

previous reports [31], may reflect enhanced endoplasmic reticulum stress responses and 430 

immune evasion mechanisms in MVI+ tumors. TALDO1, a central enzyme in the 431 

pentose phosphate pathway, is integral to metabolic reprogramming in cancer [32]. Its 432 

deficiency has been linked to spontaneous liver tumorigenesis, highlighting its critical 433 

role in HCC progression [33]. PGK1, a key player in glycolysis, supports the rapid 434 

energy demands of metastatic cells by enhancing glycolytic flux, a hallmark of cancer 435 

metabolism [34]. Its upregulation in MVI+ HCC likely supports the increased energy 436 

demands of invasive tumor cells, consistent with the Warburg effect [35]. Beyond their 437 

mechanistic insights, these biomarkers also present promising therapeutic targets for 438 

personalized treatment strategies in MVI+ patients. Recent studies have identified 439 

specific inhibitors targeting two of these markers: Ilicicolin H, a non-ATP competitive 440 

inhibitor of PGK1, has demonstrated dose-dependent inhibition of HCC cell 441 

proliferation and apoptosis induction [36], while AO-022, an allosteric inhibitor of 442 

TALDO1, has shown capacity to block tumor invasion and metastasis in cancer models 443 

[37]. Although specific PDIA3 inhibitors remain underdeveloped, its role in immune 444 

evasion makes it an attractive target for future drug development. These findings not 445 

only elucidate the biological mechanisms underlying MVI but also provide a rational 446 

foundation for potential neoadjuvant targeted therapies in patients identified with high 447 

MVI risk through our proteomic approach. ScRNA-seq analysis further elucidates the 448 

cellular origins of these biomarkers and revealed that these biomarkers were 449 

significantly upregulated in both macrophages and malignant cells, highlighting a 450 

potential synergistic relationship between tumor cells and immune cells. This 451 
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interaction may drive vascular invasion through coordinated metabolic and immune 452 

regulatory mechanisms. Specifically, the upregulation of PDIA3 in malignant cells may 453 

enhance immune evasion, while TALDO1 and PGK1 likely support the metabolic 454 

demands of both cell types, fostering a pro-invasive microenvironment. These findings 455 

align with previous reports suggesting that macrophage-tumor cell interactions promote 456 

inflammation, tumor growth, and extracellular matrix (ECM) remodeling [38].  457 

Despite these promising findings, several limitations must be acknowledged. First, 458 

while our multicenter design enhances generalizability in Chinese patient population, 459 

further validation in more geographically and ethnically diverse populations is needed. 460 

Second, the retrospective nature of biomarker selection may have overlooked additional 461 

proteins potentially involved in MVI, suggesting the value of integrating multi-omics 462 

data in future studies to identify novel biomarkers and enhance the predictive capacity 463 

of the model. 464 

In conclusion, our study provides a comprehensive analysis of the plasma 465 

proteomic landscape and identifies three plasma protein biomarkers specific to MVI-466 

positive patients. By developing and validating a robust, non-invasive plasma protein 467 

diagnostic panel, we present a promising tool for the early identification of MVI in 468 

HCC, with potential clinical implications for patient management and therapeutic 469 

decision-making. 470 
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Figure Legends 580 

Figure 1. Study design of the analyzed cohort and experiment workflow. Created 581 

by Biorender.com. 582 

Figure 2. Plasma proteomic landscape of MVI+ and MVI- HCC. A. Number of 583 

proteins identified by quality control. B. Number of proteins identified in the two 584 

groups. C. Data completeness curve. The curve highlights the data completeness at 585 

thresholds of 50%, 75% and 100%, with arrows marking these key values. D. 586 

Cumulative number of identified proteins. E. The protein abundance distributions in 587 

MVI+ and MVI- samples. F. Density plot of protein abundance in MVI+ and MVI- 588 

samples. G. Radar plot of protein subcellular localization. H. Annotation of secreted 589 

proteins.  590 

Figure 3. Functional protein module associated with MVI. A. Soft-threshold plot for 591 

WGCNA. B. Gene dendrogram with different colors showing the modules identified 592 

by WGCNA. C. WGCNA identified 14 functional protein modules (ME01–14) 593 

enriched in proteomic data. Each network node represents a protein, color-coded 594 

according to the different functional modules. D. The relationship between gene 595 

modules and the MVI phenotype. The strengths of the positive (red) and negative (blue) 596 

correlations are shown in the two-color heatmap. Pearson correlation coefficients and 597 

FDR were calculated using the WGCNA package. E. Bar plot showing the module score 598 

of the 14 protein modules in the MVI+ and MVI- groups. P-values were calculated 599 

using the Mann–Whitney U test and adjusted for multiple comparisons using the FDR 600 

correction.  601 

Figure 4. Plasma protein biomarkers of MVI. A. Principal component analysis (PCA) 602 

of proteins in plasma samples from MVI+ and MVI- groups. B. Volcano plot showing 603 

differentially abundant proteins between MVI+ and MVI- samples. C. Heat map of 604 
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differentially expressed proteins downregulated (blue) and upregulated (red) in MVI+ 605 

samples. D. Enrichment network for upregulated proteins in MVI+ samples.  E. 606 

Enrichment network for downregulated proteins in MVI+ samples.  F. Box plot 607 

illustrating the abundance of potential biomarker proteins in MVI+ and MVI- samples 608 

based on proteomics data. G. Box plot illustrating the abundance of potential biomarker 609 

proteins in MVI+ and MVI- samples based on ELISA data. 610 

Figure 5. Plasma protein-based machine learning model for preoperative MVI 611 

prediction. A. ROC analysis for three protein biomarkers and PRIM to predict MVI in 612 

the FAHHMU cohort (up left). Confusion matrix showing the classification results of 613 

the model in the FAHHMU cohort (up right), performance metrics including AUC, 614 

specificity, sensitivity for the model in the FAHHMU cohort (bottom). B. PRIM score 615 

and expression of three protein biomarkers in MVI+ and MVI- samples in the 616 

FAHHMU cohort. C. ROC analysis for three protein biomarkers and PRIM in 617 

identifying MVI+ patients in HMUCH cohort (up left). Confusion matrix showing the 618 

classification results of the model in the HMUCH cohort (up right), performance 619 

metrics including AUC, specificity, sensitivity for the model in the HMUCH cohort 620 

(bottom). D. PRIM score and expression of three protein biomarkers in MVI+ and MVI- 621 

samples in the HMUCH cohort. E. ROC analysis for three protein biomarkers and 622 

PRIM in identifying MVI+ patients in the JU-CMU cohort (up left). Confusion matrix 623 

showing the classification results of the model in the JU-CMU cohort (up right), 624 

performance metrics including AUC, specificity, sensitivity for the model in JU-CMU 625 

cohort (bottom). F. PRIM score and expression of three protein biomarkers in MVI+ 626 

and MVI- samples in the JU-CMU cohort.  G. Decision curve analysis to assess 627 

clinical benefit (left: FAHHMU cohort, middle: HMUCH cohort, right: JU-CMU 628 

cohort). 629 

Jo
urn

al 
Pre-

pro
of



Figure 6. A cell type-resolved atlas of biomarker expression by ScRNA-seq. A. 630 

UMAP visualization showing the major cell types of HCC tumors (left: total samples, 631 

middle: MVI+ samples, right: MVI- samples). B. UMAP of single-cell transform–632 

normalized PDIA3, TALDO1, and PGK1 expression, and Bar plot showing gene 633 

expression of three marker proteins in all cells in MVI+ and MVI- groups. ***P < 634 

0.001; **P < 0.01; *P < 0.05.  C. Bar plot showing cell type gene expression of three 635 

marker proteins in MVI+ and MVI- groups. ***P < 0.001; **P < 0.01; *P < 0.05. 636 
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Highlights 

• Plasma proteome profiling can differentiate between MVI+ and MVI- patients. 

• A plasma protein-based model was developed for preoperative MVI prediction. 

• ScRNA-seq analysis reveals cell-type-specific expression of MVI biomarkers. 
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