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Cucurbitacins have a variety of bioactivities, such as anticancer, anti-inflammatory,
antidepressant-like, and antiviral effects, but their pharmacological effect in ulcerative colitis
(UC) has not been reported until now. Thus, this study aims to investigate the preventive effects
of Xuedan sustained release pellets (XSPs) on UC rats and the underlying mechanisms. XSPs
were prepared by extracting cucurbitacins fromHemsleya. Experimental UC ratswere induced
by the intake of 4%dextran sulfate sodium (DSS) for a week and treated with different doses of
XSP (0.95, 1.90, and 3.8mg/kg). The body weight, colon length, disease activity index (DAI),
and histological changes of colonic tissue were measured. In addition, the expressions of pro-
inflammatory cytokines were detected by using the enzyme-linked immunosorbent assay.
Pathways involved in the intestinal inflammation were targeted by RNA-sequencing. Moreover,
the changes of gut microbial diversity and composition were analyzed by the 16SrNA analysis
and the contents of short-chain fatty acids (SCFAs) were detected by GC-MS. The results
revealed that XSP intervention greatly restored theweight loss and colonic shortening (p<0.05)
and reduced the raised DAI scores, myeloperoxidase, and nitric oxide activities in UC in rats
(p < 0.05). XSP administration also downregulated the protein levels of pro-inflammatory
factors IL-1β, IL-6, and TNF-α. Notably, it was found that XSP considerably suppressed the
activation of the MAPK signaling pathway. In addition, XSP treatment improved the balance of
gutmicrobiota thatwas disturbedbyDSS. Thebeneficial bacteria Lachnospiraceae_NK4A136
group and Lactobacillus at the genus level significantly increased in the XSP group, which had
decreased with the use of DSS (p < 0.05). Pathogenic bacteria including Escherichia–Shigella
andBacteroides in UC in ratswere reducedby XSP intervention. Furthermore, XSP significantly
elevated the production of SCFAs in UC in rats (p < 0.05). These alterations in inflammatory
status were accompanied with changes in gut microbiota diversity and SCFA production. In
conclusion, XSP exhibited protective effects against DSS-induced UC in rats. XSP treatment
decreased inflammation viamodulation of gut microbiota composition and SCFA production.
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INTRODUCTION

Ulcerative colitis (UC) is a chronic inflammatory disorder in
the rectal and colonic mucosa (Ordás et al., 2012). The
prevalence of UC is rising worldwide because of increasing
incidence and low cure rate (Feng et al., 2021). Moreover, UC
patients have an increasing risk of developing colorectal
cancer (Eaden et al., 2001). Many factors, such as
immunological deficiency, genetic context, and
environmental factors, are considered the main causes of
UC (Dutta and Chacko, 2016; Cho et al., 2017). However,
the precise mechanisms of UC have not yet been completely
elucidated. Drugs for treating UC are mainly
immunosuppressive, anti-inflammatory, biological agents,
and antibiotics (Bonovas et al., 2018; Bhattacharya and
Osterman, 2020; Fiorino et al., 2021). These therapies can
partly ameliorate clinical symptoms in UC patients.
Nevertheless, side effects always occur when using these
drugs (Armuzzi and Liguori, 2021). Therefore, it is
necessary to find newer, safer therapies for UC patients.

Gut microbiota have received increasing attention for their
crucial role in maintaining a healthy host. A large number of
studies have reported that gut microbiome disorders coincide
with a variety of human diseases. These diseases include UC,
colon cancer (Kinross et al., 2008; Young et al., 2010; Dickson,
2017), obesity (Turnbaugh and Gordon, 2009; Sweeney and
Morton, 2013), diabetes (Brown et al., 2011; Devaraj et al.,
2013), central nervous system disorders (Ghaisas et al., 2016),
and cardiovascular diseases (Kelly et al., 2016; Saji et al.,
2019). The main metabolic products, short-chain fatty acids
(SCFAs), are produced by gut microbiota by fermenting
undigested complex carbohydrates in the colon (Rooks and
Garrett, 2016).

Accumulating evidence reveals that SCFAs play an essential
role in maintaining the balance between gut flora and the host
immune system (Fattahi et al., 2020; Campos-Perez and
Martinez-Lopez, 2021; Roopashree et al., 2021), resulting in
SCFAs being recognized as crucial factors for health
protection by promoting metabolism and immune
homeostasis (Liu et al., 2021; Mallick and BasakDuttaroy,
2021; Salsinha et al., 2021). SCFAs are small-molecule
metabolites and consist mainly of acetate, propionate, and
butyrate (Koh et al., 2016). Previous reports have shown that
SCFAs could decrease inflammation by modulating p38
MAPK, NLRP3, and MEK–ERK signaling pathways (Segain
et al., 2000; Park et al., 2007; Yonezawa et al., 2007; Kobayashi
et al., 2017). Many factors regulate SCFA production,
including bacterial communities in the gut, aging, and
dietary fibers (Macfarlane and Macfarlane, 2003; Ran An
et al., 2019; Mizuno et al., 2020). Treatment with
exogenous SCFAs and increasing endogenous SCFAs have
been proposed to reduce inflammation in UC (Vernia,
2007; Couto et al., 2020; Morales Fénero et al., 2021; Xiao
et al., 2021). Among various therapies, herbal medicine has
exhibited potential anti-inflammatory effects by regulating gut
microbiota diversity and SCFA production (Feng et al., 2018;
Xuedong An et al., 2019). Therefore, it can be considered an

alternative treatment method for UC (Lin et al., 2020; Fan
et al., 2021).

Xuedan is the dry root tuber of the Hemsleya genus in the
Cucurbitaceae family. The medicinal plants are mainly
distributed in Chongqing, Sichuan, Yunnan, and Guizhou
provinces (Ling Xu Li et al., 2016). Xuedan possesses the
traditional functions of clearing heat and eliminating toxins
and relieving swelling and pain. The crude drug is
traditionally used as a remedy for bacillary dysentery and
gastroenteritis (Yang and Mo, 2004). A recent research study
has revealed that Xuedan is rich in various active substances,
including cucurbitacins, glycosides, lignans, phenolics, and
other constituents (Kubo et al., 1996; Li et al., 2015; Song et al.,
2015; Ye-Dan Li et al., 2016; Li et al., 2017; Jin et al., 2019).
Recent studies have also shown that Xuedan has anticancer,
anti-HIV, and anti-inflammatory activities, in which
cucurbitacins play a crucial role in curing related diseases
(Wu et al., 2002; Tian et al., 2008; Peng et al., 2020; Kim et al.,
2015). Cucurbitacin preparations, such as Xuedan tablets, are
clinically used for treatment of respiratory and digestive tract
inflammation. Thus, because of the anti-inflammatory effects
of cucurbitacins in other tissues, we hypothesized that these
cucurbitacin ingredients might be effective in modulating
colonic inflammation. In the present study, we aimed to
investigate the possible preventive effects of XSP on DSS-
induced UC in rats and uncover the possible mechanisms.

MATERIALS AND METHODS

Materials and Reagents
The crude form of Xuedan was bought from the Qiancaoyuan
Chinese Medicinal Materials Management Department
(Kunming, China). A voucher specimen was deposited at
the College of Pharmaceutical Sciences and Chinese
Medicine, Southwest University. Standard cucurbitacin IIa
(purity >98%) was bought from the National Institute for the
Control of Pharmaceutical and Biological Products (Beijing,
China). Dextran sodium sulfate (DSS) was obtained from
Meilunbio (MW:36000-50000, Dalian, China); the fecal
occult blood test kit was supplied by the Nanjing Jiancheng
Bioengineering Institute (Nanjing, China); enzyme-linked
immunosorbent assay (ELISA) kits for IL-1β, TNF-α, IL-6,
IL-10, nitric oxide (NO), and myeloperoxidase (MPO)
analyses were purchased from Abebio (Wuhan, China).
High-performance liquid chromatography (HPLC)–grade
acetonitrile was purchased from Tedia Company, Inc.
(Fairfield, OH, United States), and other chemical regents
were of analytical purity.

Preparation of Xuedan Sustained Release
Pellets
Xuedan was ground to powder and refluxed for 2 h in 10 times its
volume of 95% ethanol at 80°C. The extraction was repeated three
times. Subsequently, the extracted solutions were combined and
filtered to discard the remains. Next, the filtrate was condensed by
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a rotary evaporator. Then, petroleum ether was added to degrease
the concentrated solutions. After that, cucurbitacins were
extracted from the purified solutions by using ethyl acetate.
Finally, the extracted solutions were concentrated via the
rotary evaporator and dried in a vacuum oven for 48 h. The
solid residue was collected and used as the pellet cores of XSPs,
and then the pellet cores were prepared by
extrusion–spheronization technology. Fluidized bed coating
technology was used to coat the pellet cores. The
morphological traits of the coating layer and pellets were
observed by scanning electron microscopy (SEM, Zeiss Sigma
HD). The physiochemical properties of XSPs were also
determined. In addition, the in vitro release rate was detected
according to general principles of the Pharmacopoeia of the
People’s Republic of China (2020 version). The release of the
drug was quantified by HPLC.

Before pharmacological evaluation, the main phytochemical
component, cucurbitacin IIa, in XSP was analyzed and quantified
by HPLC. Briefly, a Shimadzu LC-20A instrument was used for
HPLC analysis. The separation was performed on an Ultimate
XB-C18 (250 mm × 4.6 mm; 5 μM, Welch Material, West Haven,
CT, United States). The eluent solvents consist of deionized water
(A) and acetonitrile (B) in a constant proportion of 65:35 and
flow rate of 1.0 ml/min; 10 µl of the sample solution was used for
HPLC analysis. The ultraviolet spectrum was set at 202 nm for
producing chromatograms of cucurbitacin IIa. The HPLC
method showed good linearity, precision, repeatability, and
stability under the aforementioned analytic conditions.

Experimental Animals and Treatment
All adult Sprague–Dawley (SD) rats (180–230 g; certificate number
SCXK (Xiang) 2016-0002) were provided by Hunan SJA laboratory
Animal Co., Ltd. andmaintained in appropriate conditions (22 ± 1°C
and 12-h light/dark cycle). After several days of acclimatization, the
rats were randomly divided into five groups (n = 10 per group) as
follows: the control group; DSS group (4% DSS); LXSP group (4%
DSS + 0.95mg/kg XSP); MXSP group (4% DSS +1.90mg/kg XSP);
and HXSP group (4% DSS + 3.80mg/kg XSP). The rats were
administered 4% DSS in drinking water over a period of 7 days to
induce UC (Xu et al., 2021; Zhang et al., 2021). The animals in the
XSP groups were continuously administered XSP via gavage for
10 days. The rat body weight, stool consistency, and stool occult
blood tests were regularly measured to assess UC severity during the
experimental period. The animals were killed at day 11 of the
experiment. The blood samples were harvested from the
abdominal aorta and immediately centrifuged at 3,000 × g for
15min at 4°C. The pellet was discarded, and the supernatant was
collected for further analysis. Colonic tissues were removed and
washed with ice-cold phosphate-buffered saline (PBS). Subsequently,
the length andweight of the colons were determined. A portion of the
colon was immediately fixed in 4% paraformaldehyde overnight.
Thereafter, the tissue was embedded in paraffin for histological
inflammation assessment. The remaining samples were stored at
−80°C for further analysis. All animal procedures in this study were
performed according to theGuide for the Care andUse of Laboratory
Animals. This study was also approved by the Animal Experiment
Ethics Committee of Southwest University.

Histologic Examination
The fixed colonic tissues were washed with deionized water for
30 min and dehydrated with 75, 85, 95, and 100% ethanol. Then,
the tissues were soaked in xylene solution for permeabilization.
Subsequently, the tissues were immersed into paraffin and cut
into 5-μm sections. Hematoxylin/eosin (H&E) was used to stain
these sections for histological examination. The changes in colon
histopathology were visualized under a microscope. The
pathological scores were calculated to evaluate the degree of
colon injury.

ELISA Analysis
The levels of inflammatory mediators (IL-1β, IL-10, IL-6, and
TNF-α) in blood samples were measured using an ELISA kit,
according to the manufacturer’s protocol. Meanwhile, the
activities of MPO and NO were evaluated to reflect neutrophil
infiltration into the inflamed colonic mucosa. MPO and NO were
measured by using ELISA kits.

Fecal 16SrNA Analysis
Fecal genomic DNA was extracted using the TGuide S96 Magnetic
Stool DNAKit (Tiangen Biotech Co., Ltd. Beijing, China), according
to manufacturer’s instructions. The DNA quality was assessed using
the Qubit dsDNA HS Assay Kit and Qubit 4.0 Fluorometer
(Invitrogen, Oregon, United States). The special region (V3-V4)
of the 16S rRNA gene in DNA samples was amplified using the
general primers 338FP 5′-ACTCCTACGGGAGGCAGCA-3′ and
806RP 5′-GGACTACHVGGGTWTCTAAT-3’. The reaction
volume for the polymerase chain reaction (PCR) was 10 μl,
including 338FP (10 μM) 0.3 μl, 806RP (10 μM) 0.3 μl, KOD FX
Neo 0.2 μl, KOD FX Neo Buffer 5 μl, dNTP (2 μM) 2 μl, DNA
template 25 ng, and distilled water up to 10 μl. The PCR products
were further purified using Agencourt AMPure XP Beads (Beckman
Coulter, Indianapolis, IN, United States) and quantified using the
Qubit 4.0 Fluorometer (Invitrogen, Thermo Fisher Scientific,
Oregon, United States). Then, the purified PCR products were
mixed in equal amounts to construct a library. The library was
sequenced on Illumina Novaseq 6000, and further bioinformatic
analysis was carried out using BMKCloud (Biomarker Technologies
Co., Ltd. Beijing, China).

SCFA Measurement in Excrement
SCFAs were extracted from the fecal samples by using methanol
solution. Briefly, 0.5 g of a fecal sample was suspended in 2 ml
methanol, and the pH value was adjusted to 2.0 by sulfuric acid
solution. Subsequently, the suspensions were placed in ice water
for 20 min and instantly homogenized using a vortex mixer. The
suspensions then were centrifuged at 12,000 × g for 15 min at 4°C.
Finally, the supernatants were filtered and collected for further
analysis. The contents of SCFAs were determined using a
Shimadzu GC2010A (Kyoto, Japan) gas chromatography
instrument coupled to a MS-QP2010 mass spectrometer. The
inlet temperature was set at 220°C, and 1.0 μl of the sample was
injected into the GC-MS system. The run time of the analysis was
set to 17.5 min for each sample. The detection conditions were
nitrogen gas set at a flow rate of 1.0 ml/min; ionization voltage,
70 eV; inlet temperature, 220°C; and detector temperature, 250°C.
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The total ion chromatograms were compared to the standard GS-
MS chromatograms to identify the profiles of SCFAs according to
peak similarities and m/z.

RNA-Seq Analysis
Three group samples (control, DSS, and MXSP groups) were
selected for RNA-seq analysis. Three biological repeats were
performed for each group. TRIzol reagent (Invitrogen,
United States) was used to extract total mRNA from the colon
tissue according to the standard protocol. RNA quantity and
purity were detected by using a Nanodrop 2000. The RNA
integrity and renewable identification numbers (RIN) were
verified using an Agilent 2100 Bioanalyzer. The mRNA
sequencing library was constructed using an Ion Total RNA-
Seq Kit v2 (Life Technologies, United States), according to the
manufacturer’s instructions. Then, the cDNA libraries were
sequenced using an Illumina HiSeq 2000. The following de
novo assembly and bioinformatic analysis were performed on
the Majorbio cloud platform (Majorbio, Shanghai, China).
Differential expression genes (DEGs) of samples were
determined using DEGseq (http://bioconductor.org/packages/

stats/bioc/DEGSeq/), DESeq2 (http://bioconductor.org/
packages/stats/bioc/DESeq2/), and edgeR (http://bioconductor.
org/packages/stats/bioc/edgeR/).

Statistical Analysis
Data were analyzed as mean ± standard deviation (SD).
Statistical differences among the groups were measured by
one-way analysis of variance (ANOVA) and multiple
comparisons. A p-value <0.05 was set as statistically
significant. The data calculations were carried out using
GraphPad Prism 6.0 Software.

RESULTS

Components and Release Profiles of XSP
Among active components in XSPs, cucurbitacin IIa was
identified as the major component. Cucurbitacin IIa
accounts for 1.25% of Xuedan Materia Medica. After
extraction and purification, the total collected
cucurbitacins were used as the pellet core of XSPs. The

FIGURE 1 | Quality evaluation of XSP. (A) Image showing the overall appearance traits of XSP. (B) SEM images showing the cross section of XSP. (C) HPLC
properties of the representative component cucurbitacin IIa in XSP. (D) Graph showing the in vitro release of XSP at 0–12 h.
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surface of the pellets was scanned by SEM. It was observed
that the pellets were spherical and had similar size. Moreover,
the surface of pellets was coated compactly and had a round
and smooth appearance. The bulk density and degree of
roundness of XSP corresponded with the standards of the
pellets. The content of cucurbitacin IIa was concentrated to
20.63% in XSPs and thus selected as the marker for the release
rate of XSPs (Figure 1C). The drug release profiles in a
simulated artificial intestinal environment were explored.
Cucurbitacin IIa from XSPs was released in artificial
intestinal fluid in a slow and sustained manner. To
investigate the in vitro release performance of XSPs, the
cumulative release of the XSPs was determined. There was
little drug leakage in the artificial gastric fluid within 2 h,
indicating that the pellets had an intact enteric coating layer.
The cumulative release rate of the drug in artificial simulated
intestinal fluid was more than 75% within the first 12 h. The
result demonstrated that XSP has a constant release rate
(Figure 1D).

XSP Improves DSS-Induced Ulcerative
Colitis in Rats
We administered 4% DSS to rats to induce the UC model. The
body weight of rats was monitored daily. The body weight of

animals in the DSS group began to decrease at day 5, while it
gradually increased in other groups. Compared with the DSS
group, animals treated with XSP exhibited a remarkable increase
in body weight beginning at day 7 (Figure 2B; p < 0.05). The
disease activity index (DAI) score increased distinctly in the DSS
group compared to healthy controls from day 4 (Figure 2C; p <
0.01), whereas the DAI scores were markedly lower in the XSP
groups with different doses (p < 0.05). Colonic shortening is
another important symptom of colitis. As shown in Figure 2D,
the colon length in the control group (14.0 ± 0.73 cm) was the
longest, while the colon length shortening in the DSS group was
significant (p < 0.0001). The colons were longer in the XSP groups
with a length range of 12.16–19.95 cm. As expected, the change in
colon shortening in the DSS group could be partly reversed by
XSP supplementation.

XSP Inhibits Alleviated Colonic
Morphological Damage and Inflammatory
Cell Infiltration in Ulcerative Colitis in Rats
H&E staining in the colon tissues was performed to show the
protective effect of XSP in colon injury. In the DSS group, the
colon structure was seriously destroyed, and severe
inflammatory cell infiltration was observed in the muscular
layer of the colon. XPS treatment could significantly alleviate

FIGURE 2 | XSP treatment remarkably alleviates DSS-induced colitis in rats. (A) Flow chart of animal treatment (n = 10). (B)Changes of body weight (n = 6–10). (C)
Disease activity index (DAI) scores (n = 6–10). (D)Colon lengths in different groups (n=6–10). Data were represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001,
and ****p < 0.0001.
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the colonic morphological damage caused by DSS. Reduced
crypt epithelial aberrations and less inflammatory cell
infiltration were also observed in XSP groups (Figure 3A;
p < 0.0001). Furthermore, the activities of NO and MPO were
measured to indicate the degree of inflammation in colon
tissue. As shown in Figure 3B, colonic tissues in the DSS
group showed increased levels of MPO and NO compared to
the colonic tissues in the other groups. It was found that XSP
in different doses remarkably reduced the increasing MPO
and NO activities caused by DSS (Figure 3A; p < 0.0001).

XSP Decreases the Expression of
Pro-Inflammatory Cytokines in Ulcerative
Colitis in Rats
As shown in Figures 4A–C, the protein levels of TNF-α, IL-1β,
and IL-6 in the serum were significantly increased in the DSS
group compared with the control group (p < 0.0001). However,
XSP treatment dramatically decreased the levels of the
inflammatory factors. In addition, XSP intervention
significantly upregulated the protein level of IL-10 in UC in
rats (p < 0.0001). Thus, the present results indicated that XSP

could obstruct the inflammatory response, thus contributing to
the treatment of UC.

XSP Regulates the Imbalance of Gut
Microbiota in Ulcerative Colitis in Rats
To further confirm the protective effects of XSP on the gut
microbiota dysbiosis induced by DSS, fecal bacterial DNA was
extracted and sequenced. Beta diversity analysis of the samples,
including principal component analysis (PCA) and principal
coordinate analysis (PCoA), was carried out using QIIME
software. The results showed that gut microbiota in the DSS
group were clearly different from those in the control and XSP
groups. In addition, samples in the control and XSP groups were
clustered together (Figure 5A). The relative species abundance
and diversity of gut microbiota were reduced in DSS-induced UC
in rats, while MXSP treatment could partly restore the balance in
the microbiota community. As shown in Figures 5B,C, at the
family level, decreased Lactobacillaceae, Lachnospiraceae, and
Muribaculaceae content and increased Bacteroidaceae,
Enterobacteriaceae, and Peptostreptococcaceae content in the
DSS group was restored after MXSP intervention. At the

FIGURE 3 |H&E staining of colon tissues and the activities of NO and MPO. (A) Epithelial damage, inflammatory cell infiltration, and crypt lesions in different groups
were evaluated by H&E staining, and pathological scores were quantified in a bar graph. (B) Activities of MPO and NO were determined to indicate the degree of
inflammation in colon tissue. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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genus level, the relative abundance of Lactobacillus and
Lachnospiraceae_NK4A136 decreased in the DSS group but
were remarkably elevated in the MXSP treatment group (p <
0.05). In contrast, DSS induced increased abundance of
Bacteroides and Escherichia–Shigella, which were decreased by
MXSP treatment. The present results showed that XSP
administration could restore the gut microbiota dysbiosis to a
healthy balance.

XSP Modulates SCFA Production in
Ulcerative Colitis in Rats
Previous research has indicated that the levels of SCFAs in UC
patients were lower than those in non-UC individuals (Deleua
et al., 2021). As the gut microbiota was changed in DSS-induced
UC in rats, the varieties of SCFAs in rat feces were further
analyzed by gas chromatography–mass spectrometry (GC-MS).
As shown in Figure 6, five components of SCFAs were identified
and quantified, including acetate, propionate, butyrate,
pentanoate, and caproate. The results demonstrated that
acetate, propionate, and butyrate represent a higher proportion
of SCFAs, while the contents of pentanoate and caproate were
very low. Compared to other groups, the levels of SCFAs in the
DSS group significantly declined, and two components,
pentanoate and caproate, were even undetectable (p < 0.05).
Conversely, the levels of SCFAs considerably increased after XSP

intervention (p < 0.05). In addition, the increase of SCFAs
showed a dose-dependent trend. Thus, the present results
demonstrated that XSP reversed the SCFA reduction in UC in
rats induced by DSS.

XSP Reduced Systemic Inflammation in
Ulcerative Colitis in Rats
To further explore the underlying mechanism of XSP on UC
prevention, RNA-seq analysis of rat colons from control, DSS,
and MXSP groups was carried out. The DEGs in the
experimental groups were determined and analyzed (|
log2FC|≥1 and p < 0.05). As shown in the heat map
(Figure 7A), the DEGs in the DSS group showed less
commonality with those in the XSP treatment group.
Moreover, the samples in the MXSP and control groups
formed a branch shown by using the hierarchical cluster
analysis. Specifically, 1,750 DEGs in rat colonic tissue were
identified after administration of 4% DSS, whereas 1,638 DEGs
were identified in rat colonic tissue treated with MXSP.
Overall, 617 upregulated and 1,021 downregulated DEGs
were identified in the DSS vs. MXSP groups. There were
824 upregulated and 926 downregulated DEGs identified in
the DSS vs. control groups. There were 1,102 DEG genes
associated with the control, DSS, and MXSP groups
(Figures 7B,C).

FIGURE 4 | Protein levels of pro-inflammatory cytokines (A) TNF-α, (B) IL-β1, (C) IL-6, and (D) IL-10 in the serum of control, DSS, LXSP, MXSP, and HXSP groups.
Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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The KEGG analysis was further analyzed to thoroughly
investigate the potential pathways involved in the
inflammatory responses. There were 80 and 93 pathways
enriched in the DSS vs. control groups and DSS vs. MXSP
groups, respectively (Supplementary Tables S1, S2; p < 0.05).
The results revealed that pathways involved in signaling
molecules, interaction (cytokine–cytokine receptor
interaction and cell adhesion molecules), and the immune
system (T-cell receptor signaling pathway, Th17 cell
differentiation, Th1 and Th2 cell differentiation, intestinal
immune network for IgA production, and hematopoietic
cell lineage) were targeted in the DSS vs. control groups
(Figure 8A). The pathways related to inflammation, cell
cycle, and cancer were mainly enriched in the DSS vs.
MXSP groups. The immune and inflammation-associated
pathways included the MAPK signaling pathway, TNF
signaling pathway, and B-cell receptor signaling pathway in
the DSS vs. MXSP groups (Figure 8B). There were 78

candidate inflammatory genes targeted within the classic
MAPK signaling pathway (map04060). These genes were
further analyzed by Helm software for hierarchical cluster
analysis. As shown in Figure 8C, the samples in the control
and MXSP groups formed a branch, while the samples in the
DSS group formed a single cluster. The expression levels of the
inflammatory factors in the DSS group were clearly
upregulated, while XSP treatment decreased this change.

DISCUSSION

Cucurbitacins, a class of triterpenoid compounds, which widely
exist in Cucurbitaceae, are bitter and considered as specific insect
attractants (Chambliss and Jones, 1966). Recent studies have
demonstrated that cucurbitacins possess various bioactivities
such as anti-inflammatory, antitumor, and antibacterial
properties (Alghasham, 2013; Qiao et al., 2013; Kim et al.,

FIGURE 5 | XSP reprograms gut microbiota and increases the abundance of SCFA-producing bacteria. (A) Principal component analysis (PCA) and principal
coordinate analysis (PCoA) of gut microbial communities in control, DSS, and MXSP groups. (B) Fecal microbiota composition at the family level. (C) Fecal microbiota
composition at the genus level and the proportions of the Lactobacillus, Bacteroidetes, Escherichia–Shigella, and the Lachnospiraceae_NK4A136 groups. Data are
represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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2015; Ramezani et al., 2017). However, the pharmacological
activity of cucurbitacins against UC in animals and the relative
mechanisms are still less known. Thus, in the present study, we
extracted and purified cucurbitacins fromHemsleya and prepared
sustained release pellets with the extracted materials. Then, XSP
was investigated in DSS-induced UC in rats to show its anti-

inflammatory effect and the underlying mechanism. It was found
that XSP intervention could improve the ongoing DSS-induced
UC in rats. Compared to the DSS group, rats in the XSP groups
had less frequent diarrhea and bloody stools. Meanwhile, XSP
treatment could significantly reduce weight loss compared with
the DSS-induced group. XSP treatment also ameliorated other

FIGURE 6 | Relative levels of acetate (A), propionate (B), butyrate (C), pentanoate (D), and caproate (E) in fecal samples. Data are represented as mean ± SEM.
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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symptoms of UC in rats, including low DAI score, reduced
inflammatory cell infiltration in colon, and decreased
expressions of pro-inflammatory cytokines. The results
indicate that XSP administration impedes the inflammatory

response in DSS-induced UC in rats. Furthermore, RNA
transcriptome sequencing analysis revealed that XSP could
suppress activation of the MAPK signaling pathway in UC in
rats. The MAPK signaling pathway in mammals can involve

FIGURE 7 | Differentially expressed genes (DEGs) in colonic tissue. (A) Heat map plot of DEGs in control, DSS, and MXSP groups. (B) Venn diagram of DEGs with
DSS vs. control and DSS vs. MXSP. (C) Volcano plot of DEGs between DSS vs. control and DSS vs. MXSP in colonic tissue. Note: The black dots represent genes
without differential expression between two groups, the red dots show genes that were upregulated, and the green dots show those that were downregulated.
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various physiological activities including proliferation, apoptosis,
inflammation, and inherent immunity (Kim et al., 2015). Thus,
systematic inflammation in the XSP group could be diminished
by impeding the MAPK signaling pathway.

Gut microbiota are considered a key factor in activating
the immune system. The disturbance of the gut
microbiota–host balance is associated with UC (Agus et al.,
2018). In the present study, alterations in gut microbiota

diversity and composition after XSP treatment were
identified by fecal 16S rRNA sequencing. A dramatic
decrease in microbiota diversity and composition of the
DSS group was different from that of the control and XSP
groups. The results from the beta diversity analysis showed
that rat samples in the MXSP group were gathered into the
control group and separated from the DSS group, which
indicated that XSP intervention normalized the gut

FIGURE 8 | KEGG pathway analysis of DEGs. (A) Significant pathways involving DEGs between DSS and control groups. (B) Significant pathways involving DEGs
between DSS and MXSP groups. (C) Heat map plot of genes in the MAPK signaling pathway.
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microbiota dysbiosis. The DSS-induced gut microbiota
dysbiosis may be due to the decrease in symbiotic and
increase in pathogenic bacteria. Our data showed that
important SCFA producers Lactobacillaceae and
Lachnospiraceae at the family level sharply declined in the
DSS group but were elevated after XSP supplementation. The
present study further demonstrated that the pathogenic
family Bacteroideceae was the predominant bacteria in the
DSS group, while the SCFA-producing family
Lactobacillaceae had a high proportion in the control and
XSP groups. At the genus level, the decreased abundance of
Lactobacillus and the Lachnospiraceae_NK4A136 group
induced by DSS could be significantly reversed to nearly
normal levels by XSP treatment. The two genera of
microbiota are beneficial bacteria and belong to the
families of Lactobacillaceae and Lachnospiraceae,
respectively. Lactobacillus is a probiotic and considered to
be able to elevate acetate production (Wang et al., 2021). In
addition, Lactobacillus has also shown potential activity in
treating inflammatory bowel disease (Niel et al., 2002;
Marteau, 2006; Qin et al., 2021). The
Lachnospiraceae_NK4A136 group consists of important
butyrate-producing bacteria (Tian et al., 2020). The
abundance of Escherichia–Shigella and Bacteroides
remarkably increased in UC in rats. Escherichia–Shigella
has been identified as a kind of bacteria that promotes
lung and gut inflammation (Liu et al., 2020; Cobo et al.,
2021; Zhou et al., 2021). Bacteroides showed increased
abundance in UC, which is highly associated with the
occurrence and exacerbation of gut inflammation
(Setoyama et al., 2003; Valguarnera and Wardenburg,
2020). However, the increase in the two pathogenic
bacteria was significantly attenuated by XSP treatment.

The alternation of gut microbial composition brought
corresponding changes in their metabolites. As crucial
metabolites of gut microbiota, SCFAs have received increasing
attention as an important factor in the regulation of the gut
epithelium and immune system (Venegas et al., 2019). After
DSS induction, the total levels of the five main SCFAs,
including acetate, propionate, butyrate, pentanoate, and
caproate, were significantly reduced but were elevated by XSP
treatment. Among SCFAs, butyrate, in particular, is involved in the
immune system (Yoo et al., 2020). Many studies have also revealed
that butyrate has potential activity in relieving symptoms and
inflammation of IBD (Deleua et al., 2021). The present results
indicated that XSP administration significantly reversed the
decrease in butyrate production caused by DSS. Coincidentally,
the abundance of the butyrate-producing bacteria
Lachnospiraceae_NK4A136 group in Lachnospiraceae family
was greatly elevated after XSP intervention, showing positive
correlation between butyrate and its producer. In addition,
another increased beneficial microbiota, Lactobacillus, was also
positively related to elevation of acetate production in the XSP
group. As a result, the elevation of SCFA levels after XSP
administration was caused by the alterations of microbial
composition, especially the increased production of the
Lachnospiraceae_NK4A136 group and Lactobacillus. Moreover,

the elevation of SCFAs in XSP groups occurred in a dose-
dependent manner. Meanwhile, the inflammatory state of UC
in rats was lessened by XSP intervention but was not totally
dependent on the dosages of XSP. The increased SCFAs and
decreased inflammatory symptoms with XSP intervention
showed a negative correlation, although the trend with different
doses is not exactly consistent. This inconsistency may be due to
preventive XSP treatment as SCFA production was directly
reversed by maintaining the microbiota composition during
development of inflammation. Inflammation results from a
combination of many factors and is a complex pathological
process. In addition, it was difficult to accurately evaluate the
specific role of individual or mixed SCFAs on anti-UC (Ran An
et al., 2019). Moreover, whether XSP has an anti-inflammatory
effect independent of gut microbiota also needs to be further
studied. SCFAs are considered mediators of gut bacteria and
inflammation, and exogenous SCFA administration has been
suggested as an effective remedy to ease inflammation (Gill
et al., 2018). SCFAs were reported to control the expression of
inflammatory cytokines in modulating protective immunity and
tissue inflammation. This modulation was achieved by regulating
the MAPK signaling pathway and promoting GPR41 and GPR43
expression (Kim et al., 2013). Coincidentally, the results from
colonic RNA-seq analysis targeted only the MAPK signaling
pathway. It was found that the expression of genes related to
inflammation in the MAPK signaling pathway was suppressed
after XSP intervention, resulting in a reduction in tissue
inflammation. Therefore, SCFAs resisted intestinal inflammation
probably via modulating MAPK signaling pathways in this study.
However, further precise mechanisms need to be identified.

CONCLUSION

The present study showed that XSP exhibited protective effects
against DSS-induced UC in rats. The anti-inflammatory effect of
XSP was dependent on its potential ability to restore gut
microbiota balance and increase SCFA production. The
enhanced SCFAs ameliorated colonic inflammation via
suppressing the MAPK signaling pathway. These findings offer
support for the potential application of XSP in prevention of UC
(Kim and Choi, 2015).
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