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Abstract
Multiple myeloma (MM) is a malignant clonal proliferative plasma cell tumor. Zinc oxide nanoparticles (ZnO NPs) are 
used for antibacterial and antitumor applications in the biomedical field. This study investigated the autophagy-induced 
effects of ZnO NPs on the MM cell line RPMI8226 and the underlying mechanism. After RPMI8226 cells were exposed 
to various concentrations of ZnO NPs, the cell survival rate, morphological changes, lactate dehydrogenase (LDH) levels, 
cell cycle arrest, and autophagic vacuoles were monitored. Moreover, we investigated the expression of Beclin 1 (Becn1), 
autophagy-related gene 5 (Atg5), and Atg12 at the mRNA and protein levels, as well as the level of light chain 3 (LC3). The 
results showed that ZnO NPs could effectively inhibit the proliferation and promote the death of RPMI8226 cells in vitro in 
a dose- and time-dependent manner. ZnO NPs increased LDH levels, enhanced monodansylcadaverine (MDC) fluorescence 
intensity, and induced cell cycle arrest at the G2/M phases in RPMI8226 cells. Moreover, ZnO NPs significantly increased 
the expression of Becn1, Atg5, and Atg12 at the mRNA and protein levels and stimulated the production of LC3. We further 
validated the results using the autophagy inhibitor 3-methyladenine (3‑MA). Overall, we observed that ZnO NPs can trigger 
autophagy signaling in RPMI8226 cells, which may be a potential therapeutic approach for MM.
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Abbreviations
MM	� Multiple myeloma
ZnO NPs	� Zinc oxide nanoparticles
LDH	� Lactate dehydrogenase
Becn1	� Beclin 1
Atg5	� Autophagy-related gene 5
LC3	� Light chain 3
MDC	� Monodansylcadaverine
3-MA	� 3-Methyladenine
PC	� Plasma cells
BM	� Bone marrow
TEM	� Transmission electron microscope

XRD	� X-ray diffraction
ANOVA	� Analysis of variance
PBMCs	� Peripheral blood mononuclear cells

Introduction

Multiple myeloma (MM) is a hematological malignancy 
characterized by malignant plasma cells (PC) proliferating 
abnormally in the bone marrow (BM), as well as kidney 
damage, bone destruction, and paraproteinemia [1, 2]. MM 
ranks second in the occurrence of hematological tumors 
[3, 4]. In recent years, the therapy of MM has improved 
significantly, as has the introduction of novel medications, 
including lenalidomide and thalidomide (an immunomod-
ulatory drug), bortezomib (a proteasome inhibitor), and 
daratumumab (a monoclonal antibody). Despite the fact 
that these advancements have increased response rates and 
survival rates dramatically, these patients still have a median 
survival rate of 5–6 years [5, 6]. At present, MM remains 
an incurable hematological malignancy, and drug treatment 
continues to face the challenges of drug resistance and side 
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effects [7–11]. The literature reports that most patients 
with relapsed refractory MM have a survival of less than 
12 months [12]. In addition, the treatment of MM is expen-
sive (lenalidomide costs over $200,000 for 1 year of treat-
ment), and introducing these agents earlier in the disease 
course will impose significant costs on society and increase 
the burden of treatment [13]. Therefore, overcoming MM 
cell drug resistance and generating low-toxicity, high-effi-
ciency agents are critical tasks in MM therapy research.

Nanoparticles (NPs) are defined as particles with at least 
one dimension less than 100 nm. In recent years, studies 
have demonstrated that NPs can overcome multidrug resist-
ance in cancer cells [14]. Metal oxide NPs are an attractive 
class of NPs because of their potential cytotoxicity due to 
their uptake by cancer cells [15, 16]. Remarkably, zinc oxide 
(ZnO) NPs, FDA-approved pharmaceutical formulations 
with safety, stability, and biocompatibility characteristics, 
are widely used in industrial products and pharmaceutical 
formulations [17, 18]. As a result, ZnO NPs are attracting 
attention for their significance in biological fields, such as 
cancer treatment [19], antidiabetics [20], and antibacterial 
compounds [21], and numerous studies have also demon-
strated that ZnO NPs exhibit promising antitumor activity 
against many kinds of human cancer cell lines while show-
ing less toxicity for normal cells [15, 22, 23]. Our previous 
research indicated that ZnO NPs can effectively induce MM 
cell apoptosis via reactive oxygen species and the caspase 
signaling pathway in vitro [24].

Autophagy is a self-repair mechanism that degrades mis-
folded proteins or impaired organelles, leading to recycling. 
It enables cells to adapt to changes and stimuli in their sur-
roundings, thus effectively maintaining intracellular homeo-
stasis [25]. The process of autophagy consists of three basic 
stages: autophagosome production, autophagosome-lyso-
some fusion, and phagocytic material degradation in lys-
osomes [26]. However, sustained and excessive autophagy 
could lead to cell death due to an imbalance in intracellular 
homeostasis [27, 28]. Nanomaterials, regarded by cells as 
foreign substances, are a new class of autophagy inducers 
that can determine cell fate by triggering cells to undergo 
autophagy. In addition, cancer cell death induced by ZnO 
NPs has been related to the regulation of autophagy [29, 30]. 
Liu et al. found that ZnO NPs triggered lysosomal autophagy 
system alterations in rat pheochromocytoma cells, with the 
lysosomal and microtubule systems being notably involved 
[31]. Guo et al. reported that ZnO NPs could effectively 
inhibit tenon fibroblast proliferation by activating the 
autophagic signaling pathway [32]. He et al. demonstrated 
that ZnO NPs can mediate osteosarcoma cell death through 
the interaction between two mechanisms, autophagy and 
apoptosis [33]. Although ZnO NPs have the potential to 
trigger autophagy in many cells, their impact on MM cells 
remains unclear.

In the present study, we evaluated, for the first time, the 
autophagy-activating effects of ZnO NPs on MM using 
the human MM cell line RPMI8226. We found that ZnO 
NPs could effectively inhibit the proliferation and promote 
the death of RPMI8226 cells in vitro in a dose- and time-
dependent manner. ZnO NPs effectively elevated LDH lev-
els, enhanced monodansylcadaverine (MDC) fluorescence 
intensity, and induced cell cycle arrest at the G2/M phases 
in RPMI8226 cells. Moreover, ZnO NPs also significantly 
increased the expression of Becn1, Atg5, Atg12, and LC3 
and hence triggered the autophagy signaling pathway. We 
also validated the results using the autophagy inhibitor 
3-methyladenine (3‑MA). Based on our results, there is a 
close relationship between ZnO NPs-induced MM cell death 
and the activation of autophagic signaling.

Materials and Methods

Zinc Oxide Nanoparticles (ZnO NPs) and ZnO NPs 
Solutions

ZnO NPs were purchased from Jiangsu Changtai Nanometer 
Material Co., Ltd., and the purity was not less than 99.9%. 
The diameter, morphology, and distribution of ZnO NPs 
were characterized using a transmission electron microscope 
(TEM; JEM2000EX, Japan) and a field emission scanning 
electron microscope (SEM; Zeiss Supra55, Germany) [34]. 
The dynamic light scattering nanoparticle analyzer (DLS; 
Malvern Nano-ZS, Britain) was used to determine the par-
ticle size distribution and the polydispersity index (PDI) of 
ZnO NPs in ethanol medium (40 ug/mL). An X-ray diffrac-
tometer (XRD; Rigaku, Tokyo, Japan) was used to determine 
the crystalline nature of ZnO NPs. ZnO NPs were dissolved 
in RPMI 1640 medium and sonicated on ice for 10 min prior 
to use to reduce aggregation.

Cells and Cell Culture

The human MM cell line RPMI8226 (purchased from 
ATCC, USA) was maintained in RPMI 1640 (Gibco BRL) 
containing 10% fetal bovine serum (Sigma, USA), 100 U/
mL penicillin, and 100 μg/mL streptomycin. All cells were 
cultured in a 37 °C incubator with a 5% CO2 humidified 
atmosphere [35]. An automatic cell counter (Muse; Merck 
Millipore, USA) was used to perform cell counts.

Cell Viability Assay

The MTT colorimetric experiment was used to detect viable 
cell numbers [36]. The RPMI8226 cells within five passage 
generations were used for the detection. Briefly, logarith-
mic growth stage RPMI8226 cells (density 1.0 × 105/mL) 
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were added to 96-well plates (Beyotime Biotechnology, 
China) with 100 μL of cell solution in each well. In addi-
tion, dilute solutions of different concentrations (final con-
centrations were 0, 2.5, 5.0, 10.0, 20.0, 40.0, and 60.0 μg/
mL) of ZnO NPs were added to each well. Then, the cells 
were cultured in a sterile incubator at 37 °C for 24, 48, and 
72 h. At the appointed time, 20 μL of MTT (5 mg/mL) was 
added to each well and incubated in the incubator for an 
additional 4 h. Finally, the supernatant was discarded, and 
150 μL DMSO was added. The dish was gently stirred until 
the blue formazan crystals were completely dissolved. After 
agitation, a flat plate microreader (Tecan Spectrum, Swit-
zerland) was used to measure the absorption of the cells at 
490 nm. Furthermore, the half maximal inhibitory concen-
tration (IC50) was the concentration of ZnO NPs required to 
inhibit the growth of RPMI8226 cells by 50% [37]. The IC50 
was calculated via nonlinear regression in GraphPad Prism 
(GraphPad, La Jolla, CA, USA).

Cell Morphology

RPMI8226 cells (1.2 × 105 per well) were incubated in 
6-well plates, and then various concentrations (0, 5.0, 10.0, 
or 20.0 μg/mL) of ZnO NPs were added and incubated in 
an incubator for 24 h. At the indicated times, a light field 
microscope (Olympus IX71, Japan) was used to observe the 
morphological changes in the cells.

Lactate Dehydrogenase (LDH) Activity Assay

In this study, the LDH levels in the extracellular medium 
were assessed using an LDH Assay Kit (Solarbio Science 
& Technology Co., Ltd, China). Briefly, RPMI8226 cells 
were seeded in six-well plates (NEST, Biotech., Wuxi, 
China) at a density of 5.0 × 105 cells/well for 24 h. The cells 
were divided into six groups: a control group, a 5.0 μg/mL 
ZnO NPs group, a 10.0 μg/mL ZnO NPs group, a 20.0 μg/
mL ZnO NPs group, a 5 mM 3-MA group, and a ZnO NPs 
(20.0 μg/mL) + 3-MA (5 mM) group. At the indicated time, 
the cells were collected and sonicated on ice for 15 min and 
centrifuged at 8000 g at 4 °C for 10 min, and then the super-
natants were collected. Finally, the LDH levels were deter-
mined using supernatants. All processes were carried out 
according to the instructions provided by the manufacturer 
[38]. The absorbance at 450 nm was measured by a Multi-
Mode Microplate Reader (Envision, Perkin Elmer, Waltham, 
MA, USA).

Cell Cycle Arrest

The cell cycle arrest of RPMI8226 cells after exposure 
to ZnO NPs was detected by flow cytometry. For the 
measurement, approximately 1.2 × 105 RPMI8226 cells 

were exposed to various concentrations (0, 5.0, 10.0, and 
20.0 μg/mL) of ZnO NPs and incubated in six-well plates 
for 24 h. After incubation, the cells were collected, washed 
twice with 1 × PBS, fixed in ice-cold ethanol (70%), and 
stored in a − 20 °C refrigerator overnight. Subsequently, 
stored cells were rewashed with PBS and stained with eth-
idium bromide for final analysis by flow cytometry (Accuri 
C6, Michigan, USA) [39].

Monodansylcadaverine (MDC) Staining

The number of autophagic vacuoles in RPMI8226 cells 
was assessed by monodansylcadaverine (MDC) staining. 
Briefly, various concentrations (0, 5.0, 10.0, or 20.0 μg/
mL) of ZnO NPs, 5 mM 3-MA, and ZnO NPs (20.0 μg/
mL) + 3-MA (5 mM) were applied to RPMI8226 cells cul-
tivated on 6-well culture plates for 24 h, followed by incu-
bation with MDC solution at 37 °C for 30 min. Finally, 
representative images were captured using a fluorescence 
microscope (IX71; Olympus Corporation, Tokyo, Japan) 
[40].

Real‑Time Quantitative PCR (qRT–PCR)

Four compounds (i.e., Becn1, Atg5, Atg12, LC3) were cho-
sen to explore the role of autophagy in ZnO NPs-treated 
RPMI8226 cells. The mRNA levels of autophagic genes 
(Becn1, Atg5, Atg12, and LC3) were detected by qRT–PCR, 
with GAPDH as an internal control. In brief, RPMI8226 
cells (1.2 × 105 per well) were treated with different concen-
trations (0, 5.0, 10.0, and 20.0 μg/mL) of ZnO NPs for 12 h. 
Next, the cells were collected, and total RNA was extracted 
with an RNA Tissue/Cell Rapid Extraction Kit (Sparkjade 
Co., Ltd, China). Then, cDNA was synthesized by a first-
strand cDNA synthesis kit (Takara, China). Finally, quantita-
tive PCR was performed using the SPARKscript II SYBR 
one-step qRT PCR kit (Sparkjade Co., Ltd, China) [41]. The 
primers were as follows: Becn1 sense: 5′GGG​GGT​TGC​
GGT​TTT​TCT​3′, antisense: 5′AGC​CGC​CAC​TGC​CTC​CTG​
T3′; Atg5 sense: 5′GGC​CAT​CAA​TCG​GAA​ACT​CA3′, anti-
sense: 5′GCA​GCC​ACA​GGA​CGA​AAC​A3′; Atg12 sense: 
5′CCC​CGG​GAA​CAG​AGG​AAC​C3′, antisense: 5′CTG​GGG​
AAG​GAG​CAA​AGG​ACT​GAT​3′; LC3 sense: 5′GGC​CTT​
CTT​CCT​GCT​GGT​GA3′, antisense: 5′GCC​GTC​CTC​GTC​
TTT​CTC​CTG​CTC​3′, and GAPDH sense: 5′TGC​ACC​ACC​
AAC​TGC​TTA​GC 3′, antisense: 5’GGC​ATG​GAC​TGT​GGT​
CAT​GAG 3′. The PCR program was set up as follows: 95 °C 
for 3 min, followed by 40 cycles at 95 °C for 5 s, 57 °C for 
10 s, and 72 °C for 15 s. After normalization to the GAPDH 
control, the fold changes were determined using the 2−ΔΔCt 
technique.
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ELISA

We measured Becn1, Atg5, and Atg12 protein levels after 
ZnO NPs exposure in RPMI8226 cells. Briefly, RPMI8226 
cells (6.0 × 105 cells per well) were exposed to different 
concentrations (0, 5.0, 10.0, or 20.0 μg/mL) of ZnO NPs 
for 24 h. Then, the cells were collected, washed twice with 
PBS, sonicated on ice for 15 min, and centrifuged to collect 
the supernatant. The Becn1, Atg5, and Atg12 protein levels 
in the supernatants were detected using a Human BECN1 
ELISA kit (Elabscience Biotechnology Co., Ltd., China), a 
Human ATG5 ELISA kit (Wuhan Abebio Science Co., Ltd., 
China), and a Human ATG12 ELISA kit (Wuhan Colorful-
Gene Biological Technology Co., Ltd., China) [42].

Determination of Light Chain 3 (LC3) Accumulation

We measured the levels of LC3 accumulation in RPMI8226 
cells with the Muse™ Autophagy LC3 antibody-based 
kit (Merck Millipore) and Muse™ Cell Analyzer. Briefly, 
RPMI8226 cells were cultured in an incubator for 24 h with 
0, 5.0, 10.0, or 20.0 μg/mL ZnO NPs. At the end of the 
culture, the cells were collected and washed twice with cold 
PBS. Next, the cells were treated with the Muse Autophagy 
LC3 antibody kit as directed by the manufacturer’s instruc-
tions and analyzed using a Muse™ Cell Analyzer [32].

Statistical Analysis

All results from three independent experiments are expressed 
as the mean ± S.D. In this study, statistical analysis was car-
ried out using SPSS 25.0 software, and a one-way analysis 
of variance (ANOVA) followed by Dunn’s post-hoc test was 
performed. Statistical significance was accepted at P < 0.05.

Results

To explore the effect of ZnO NPs on RPMI8226 cells, we 
examined the cell survival rate, morphological alterations, 
LDH levels, cell cycle arrest, and autophagic vacuoles. 
Moreover, we explored the expression of Becn1, Atg5, and 
Atg12 at the mRNA and protein levels and the level of LC3. 
We further confirmed the autophagy-inducing effects of ZnO 
NPs on RPMI8226 cells through the autophagy inhibitor 
3‑MA. Based on our results, ZnO NPs can trigger autophagy 
signaling in RPMI8226 cells and thus inhibit human MM 
cell proliferation.

Characterization of ZnO NPs

Figure 1A and E show that the ZnO NPs were irregular, 
spherical, or lumpy in shape, with particle sizes ranging 

from 20 to 60 nm. The DLS size distribution of ZnO NPs 
suspended in ethanol medium (40 ug/mL) is shown in 
Fig. 1B and C: the size distribution ranged from 700 to 
1400 nm with a PDI of about 0.31, indicating that ZnO NPs 
are distributed in ethanol in a steady manner. The XRD pat-
tern of ZnO NPs is shown in Fig. 1D. The 2θ angles of 
the diffraction peaks were located at ~ 31.766°, 34.418°, 
36.251°, 47.535°, 56.591°, 62.851°, 66.371°, 67.942°, 
69.081°, 72.558°, and 76.953° for the (100), (002), (101), 
(102), (110), (103), (200), (112), (201), (004), and (202) 
planes. Furthermore, the XRD spectrum showed that there 
were only normal ZnO peaks, confirming the purity of the 
ZnO NPs. Moreover, the narrow and strong diffraction peak 
suggested that ZnO NPs had an optimal crystalline structure.

Cellular Viability

Figure 2 shows the inhibitory impact of ZnO NPs on the pro-
liferation of RPMI8226 cells in a concentration- and time-
dependent manner (*P < 0.05, **P < 0.01, and ***P < 0.001 
vs. relevant control samples). After treatment with ZnO 
NPs for 24, 48, and 72 h, RPMI8226 cell viability decreased 
with increasing culture time and concentration of ZnO NPs. 
At the same time, the results showed that high concentra-
tions of ZnO NPs significantly reduced the survival rate of 
RPMI8226 cells and significantly inhibited the proliferation 
of MM cells. The IC50 values were 38.17 μg/mL at 24 h, 
32.40 μg/mL at 48 h, and 22.99 μg/mL at 72 h.

Change in Cell Morphology

As shown in Fig. 3A–D, we observed that the morphology 
of RPMI8226 cells was changed after treatment with ZnO 
NPs for 24 h. As the concentration of ZnO NPs increased, 
the number of intact RPMI8226 cells decreased, whereas 
the number of damaged cells increased. The damaged cells 
exhibited cell shrinkage, nuclear coagulation, and fragmen-
tation, and the higher the ZnO NPs concentration, the more 
severe the cell morphological damage.

Elevation of Lactate Dehydrogenase (LDH) Levels

As shown in Fig. 4, after RPMI8226 cells were exposed to 
various concentrations (0, 5.0, 10.0, and 20.0 μg/mL, respec-
tively) of ZnO NPs for 24 h, the LDH levels in the super-
natant were elevated in a concentration-dependent manner, 
whereas 3-MA treatment markedly reduced the 20.0 μg/mL 
ZnO NPs-induced LDH release level. We found that LDH 
levels in RPMI8226 cells increased from 100% to 134.112%, 
182.243%, 221.028%, 128.972%, and 139.424%, in a con-
centration-dependent manner and were significantly different 
compared to the untreated cells (**P < 0.01 and ***P < 0.001 
vs. control samples). These results suggest that ZnO NPs 
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treatment can increase the permeability of the cytoplasmic 
membrane, thereby facilitating the release of LDH into the 
culture medium.

Cell Cycle Arrest

We evaluated the changes in cell cycle distribution after 
RPMI8226 cells were treated with ZnO NPs for 24 h. Fig-
ure 5 (A–E, *P < 0.05, **P < 0.01, and ***P < 0.001 com-
pared with the control group) shows that ZnO NPs caused 
G2/M phase cycle arrest and G0/G1 phase reduction in 
human MM cells. In the present study, the number of G2/M 
phase RPMI8226 cells increased from 22.533% to 26.500%, 
29.133, and 36.900%, in a concentration-dependent man-
ner. In contrast, the number of G0/G1 phase RPMI8226 
cells decreased from 38.167% to 30.100%, 29.900%, and 
22.700%, in a concentration-dependent manner. These 

results indicate that ZnO NPs can induce cell cycle arrest at 
the G2/M phase, thereby inhibiting MM cell proliferation.

Monodansylcadaverine (MDC) Staining

MDC is a marker for autolysosomes. In the present study, 
MDC staining was used to investigate the abundance of 
autophagic vacuoles in RPMI8226 cells. In the control 
group, weak and diffuse MDC staining was observed 
throughout the cytoplasm, and very little punctate stain-
ing was observed. In ZnO NPs-treated cells, MDC stain-
ing was significantly enhanced, and the distribution pat-
tern ranged from diffuse to punctate aggregation in a 
concentration-dependent manner. The punctate staining 
in the 3-MA + ZnO NPs treatment group was markedly 
reduced (Fig. 6A–F). We found that the MDC fluorescence 
intensity changed from 100% to 132.411%, 194.576%, 

Fig. 1   Characterization of ZnO NPs. A Morphology of ZnO NPs 
characterized by transmission electron microscopy. B DLS of ZnO 
NPs suspended in ethanol medium (40 ug/mL). C Size distribution of 

ZnO NPs suspended in ethanol medium (40 ug/mL). D X-ray diffrac-
tion of ZnO NPs. E Morphology of ZnO NPs characterized by a field 
emission scanning electron microscope
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255.607%, 90.667%, and 125.000% (Fig. 6G), and there 
were significant differences compared to the untreated 
cells (*P < 0.05, **P < 0.01, and ***P < 0.001 vs. control 

samples). These results demonstrate that ZnO NPs trig-
gered the autophagy process in human MM cells.

Real‑Time Quantitative PCR (qRT–PCR)

Q-PCR was used to analyze the impact of varying doses 
of ZnO NPs on the expression of Becn1, Atg5, Atg12, and 
LC3. As shown in Fig. 7A–D, the levels of Becn1, Atg5, 
Atg12, and LC3 increased with increasing concentrations 
of ZnO NPs incubated with RPMI8226 cells (*P < 0.05, 
**P < 0.01, and ***P < 0.001 vs. the control samples). We 
found that after exposure to various concentrations (0, 5.0, 
10.0, or 20.0 μg/mL) of ZnO NPs, the mRNA level of Becn1 
was elevated 1.57-, 2.82-, and 2.56-fold, respectively; the 
mRNA level of Atg5 was elevated 1.12-, 1.63-, and 1.89-
fold; and the mRNA level of Atg12 was elevated 1.69-, 3.83- 
and 3.44-fold. Similarly, the LC3 mRNA levels increased 
1.37-, 2.72- and 6.43-fold with concentration. These findings 
demonstrate a substantial difference in autophagy signaling-
related protein expression between cells that were not treated 
(normal control) and cells that were treated with ZnO NPs.

ELISA

We further examined the changes in Becn1, Atg5, and Atg12 
protein levels in RPMI8226 cells using the ELISA tech-
nique after treatment with ZnO NPs for 24 h. Figure 8A–C 

Fig. 2   Effect of different concentrations of ZnO NPs on human MM 
cell viability. RPMI8226 cells were incubated with different concen-
trations (0, 2.5, 5.0, 10.0, 20.0, 40.0, and 60.0 μg/mL) of ZnO NPs 
for 24 h, 48 h, and 72 h, and the cell viability was detected by MTT 
assay. The results are presented as the mean ± SD of three independ-
ent experiments. *P < 0.05, **P < 0.01, and.***P < 0.001

Fig. 3   Morphological changes 
in RPMI8226 cells after expo-
sure to different concentrations 
of ZnO NPs. The cells were 
treated with different concen-
trations of ZnO NPs for 24 h, 
and representative images were 
captured by a light field micro-
scope. A Control cells; B cells 
exposed to 5.0 μg/mL ZnO NPs; 
C cells exposed to 10.0 μg/mL 
ZnO NPs; D cells exposed to 
20.0 μg/mL ZnO NPs. Inset, 
magnified cells
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shows that compared to untreated cells, Becn1, Atg5, and 
Atg12 protein levels increased with increasing concentra-
tions (0, 5.0, 10.0, and 20.0 μg/mL) of ZnO NPs (**P < 0.01 
and ***P < 0.001 vs. relevant controls). The Becn1 protein 
level in RPMI8226 cells was increased from 49.32 pg/mg to 
99.39, 103.73, and 118.88 pg/mg with concentration; Atg5 
increased from 1.94 pg/mg to 3.62, 3.86, and 4.77 pg/mg 
with concentration; Atg12 increased from 1.55 pg/mg to 
2.49, 2.54, and 3.90 pg/mg with concentration. The levels 
of these proteins increased in a concentration-dependent 
manner.

Enhancement of Light Chain 3 (LC3) Accumulation

Using the autophagy LC3 antibody-based kit, we discov-
ered that following exposure to various concentrations (0, 
5.0, 10.0, or 20.0 μg/mL) of ZnO NPs for 24 h, the inten-
sity of LC3 was dramatically increased in RPMI8226 cells 
(Fig. 9A–D) in a dose-dependent manner (Fig. 9E, *P < 0.05 
and ***P < 0.001 vs. control samples). The intensity of LC3 
increased from 18.667 to 22.167, 29.000, and 50.800 with 
concentration.

Discussion

Nanotechnology is multidisciplinary and covers the fields of 
biology, engineering, chemistry, and physics. Due to their 
high biocompatibility, many forms of NPs have significant 
potential as drug/drug delivery carriers [43, 44]. As one of 
the most widely used NPs, ZnO NPs are effective for neuro-
degenerative diseases [45, 46] and cancer treatment [47, 48]. 
Here, we have evaluated, for the first time, the effects of ZnO 
NPs on MM using the human MM cell line RPMI8226. In 
this investigation, we noted that ZnO NPs could effectively 
inhibit the proliferation and promote the death of RPMI8226 
cells in vitro in a dose- and time-dependent manner. ZnO 
NPs effectively increased LDH levels, enhanced MDC 
fluorescence intensity, and induced cell cycle arrest at the 
G2/M phase in RPMI8226 cells. Moreover, ZnO NPs also 
significantly increased the expression of Becn1, Atg5, and 
Atg12 at the mRNA and protein levels, enhanced the produc-
tion of LC3, and triggered the autophagy signaling pathway. 

Fig. 4   Measurement of LDH release levels. RPMI8226 cells were 
treated with different concentrations (0, 5.0, 10.0, and 20.0  μg/mL) 
of ZnO NPs, 3-MA (5  mM), and ZnO NPs (20.0  μg/mL) + 3-MA 
(5  mM) for 24  h, and then the LDH levels were measured using a 
commercial kit. Data were obtained from three independent experi-
ments, and the results are presented as the mean ± SD. **P < 0.01 and 
***P < 0.001 compared with the control group

Fig. 5   Cell cycle distributions of RPMI8226 cells after treatment 
with different concentrations of ZnO NPs for 24 h. Cell cycle distri-
bution was determined by flow cytometry (M2, G0/G1 phase; M3, 
G2/M phase; M4, S phase). (a) A Untreated cells; B cells treated with 
5.0 μg/mL ZnO NPs; C cells treated with 10.0 μg/mL ZnO NPs; D 

cells treated with 20.0 μg/mL ZnO NPs, and (b) E histogram analy-
sis of the cell cycle phase distributions of human MM cells after 
treatment with different concentrations of ZnO NPs. Data were 
obtained from three independent experiments and are presented as the 
mean ± S.D., *P < 0.05, **P < 0.01, and.***P < 0.001
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In addition, the autophagy-induced effect of ZnO NPs on 
RPMI8226 cells was inhibited by 3-MA. Overall, ZnO NPs 
can trigger autophagy signaling in human MM cells and thus 
inhibit MM cell proliferation.

In our study, we performed MTT assays and we found 
that RPMI8226 cell viability exhibited a concentration- and 
time-dependent effect after treatment with ZnO NPs. The 
cell viability decreased gradually as the concentration of 
ZnO NPs incubated with the cells increased, and the culture 
time was extended (Fig. 2), demonstrating that ZnO NPs 
exert considerable cytotoxic effects on RPMI8226 cells. In 
addition, we found that the morphology of RPMI8226 cells 
changed significantly after exposure to ZnO NPs. As the con-
centration of ZnO NPs increased, the morphological changes 
in RPMI8226 cells became more severe (Fig. 3A–D). Due 
to their tiny size, ZnO NPs can diffuse into the nucleus and 
interact directly with DNA [49]. DNA damage can lead to 
impairment of normal cell function, which can result in cell 
death [50, 51]. Therefore, we hypothesize that ZnO NPs 
may disrupt the DNA structure and thus induce the death of 
RPMI8226 cells. Furthermore, our previous investigation 

explored the effect of ZnO NPs on human peripheral blood 
mononuclear cells (PBMCs), and the results demonstrated 
that ZnO NPs showed little cytotoxic influence on PBMCs 
[24]. All these results indicate that ZnO NPs are significantly 
selective and cytotoxic to RPMI8226 cells.

LDH release is an important indicator of cell membrane 
integrity and is widely used in cytotoxicity assays [52]. Dis-
ruption of the cell membrane structure due to apoptosis or 
necrosis leads to the release of enzymes from the cell plasma 
into the culture medium. LDH is an enzyme that exists in 
the cytoplasm of living cells and is released outside the cell 
following damage to the cell membrane [53]. Thus, quanti-
tative analysis of cytotoxicity can be achieved by detecting 
the levels of LDH released into the culture medium from 
cells with ruptured plasma membranes. In this study, the 
level of LDH released outside the cytoplasm indicates the 
integrity of the MM cell membrane. As shown in Fig. 4, 
after RPMI8226 cells were exposed to ZnO NPs, the LDH 
levels in the supernatant were highly elevated compared to 
the related control samples. Interestingly, 3-MA significantly 
inhibited ZnO NPs-induced LDH activity. Pandurangan et al. 

Fig. 6   After treatment with 
different concentrations (0, 5.0, 
10.0, 20.0 μg/mL) of ZnO NPs, 
3-MA (5 mM), and ZnO NPs 
(20.0 μg/mL) + 3-MA (5 mM) 
for 24 h, RPMI8226 cells were 
incubated with MDC and then 
measured using an Olympus 
fluorescence microscope. A 
Untreated cells; B cells treated 
with 5.0 μg/mL ZnO NPs; 
C cells treated with 10.0 μg/
mL ZnO NPs; D cells treated 
with 20.0 μg/mL ZnO NPs; 
E 3-MA (5 mM); F ZnO NPs 
(20.0 μg/mL) + 3-MA (5 mM); 
and G histogram analysis of 
MDC fluorescence intensity of 
RPMI8226 cells. Scale bars, 
50 µm. The results are presented 
as the mean ± SD of three inde-
pendent experiments. *P < 0.05, 
**P < 0.01, and.***P < 0.001
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showed that ZnO NPs increased LDH expression in C2C12 
cells [54]. Jiang et al. observed that ZnO NPs increased LDH 
activity in lung tissue in a dose-dependent manner, while 
3-MA down-regulated LDH activity [55]. Bai et al. found 
that ZnO NPs exert cytotoxic effects on human ovarian can-
cer cells in a manner that induces LDH release [29]. In con-
clusion, these results suggest that treatment with ZnO NPs 
can increase the permeability of cell membranes, thereby 
promoting the release of LDH into the culture medium and 
thus exerting a cytotoxic effect.

After decades of studies into the cell cycle and its 
importance in tumor progression, cell cycle arrest has 
been established as one of the most efficient tumor therapy 

options [56]. In addition, it has been shown that inhibi-
tion of Golgi catabolism and related pathways leads to 
cell cycle arrest at the G2 phase [57]. The results of this 
study showed that RPMI8226 cells were arrested at the 
G2/M phase by ZnO NPs in a concentration-dependent 
manner (Fig. 5). Similarly, Boroumand et al. showed that 
ZnO NPs have the potential to arrest tumor cells at the 
G2/M phase [58]. Yin et al. demonstrated that ZnO NPs 
could lead to human tenon fibroblast cell cycle arrest at 
the G2/M phase and ultimately inhibit their proliferation 
[59]. These results are similar to our results. Our results 
show that ZnO NPs can cause cell cycle arrest in human 
MM cells. Cell cycle-arrested cells are unable to enter the 

Fig. 7   Gene expression of 
Becn1, Atg5, Atg12, and LC3. 
RPMI8226 cells were treated 
with different concentrations 
of ZnO NPs (5.0, 10.0, and 
20.0 μg/mL) for 12 h, and 
the mRNA expression levels 
of Becn1, Atg5, Atg12, and 
LC3 were compared to those 
in untreated cells. A Becn1 
mRNA level; B Atg5 mRNA 
level; C Atg12 mRNA level; 
and D LC3 mRNA level. The 
results are expressed as the 
mean ± SD (standard deviation) 
of three independent experi-
ments. *P < 0.05, **P < 0.01, 
and.***P < 0.001

Fig. 8   Measurements of Becn1, Atg5, and Atg12 expression at the 
protein level in RPMI8226 cells. The cells were treated with differ-
ent concentrations (0, 5.0, 10.0, and 20.0  μg/mL) of ZnO NPs for 
24  h, and then the expression levels of Becn1, Atg5, and Atg12 at 

the protein level were determined by ELISA. A Becn1 protein lev-
els; B Atg5 protein levels; C Atg12 protein levels. Three independent 
experiments were performed. **P < 0.01 and ***P < 0.001 vs. relevant 
control samples
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mitosis phase. Therefore, ZnO NPs may be a novel drug 
to block MM cell division.

Oxidative stress, hypoxia, and nutrient depletion can reg-
ulate the cell autophagic response [60]. The autophagy lyso-
somal degradation pathway, mediated by ATG, is essential 
for cellular, tissue, and organismal homeostasis [61]. Atg12 
can bind to Atg5 via an enzymatic reaction. The Atg12-Atg5 
conjugates function as E3 enzymes, promoting the lipidation 
of Atg8, which is essential for autophagosome formation 
during autophagy [62, 63]. Becn1, a major component of 
the class III phosphatidylinositol 3-kinase complex, medi-
ates the formation and maturation of autophagosomes [64, 
65]. In mammalian cells, LC3 is a universal marker pro-
tein for autophagic structures [66]. Here, the expression of 
Atg5, Atg12, LC3, and Becn1 was enhanced after treatment 
with ZnO NPs. MDC analysis also showed that autophagic 
vacuole formation increased with increasing concentrations 
of ZnO NPs, and ZnO NPs-induced autophagic vacuoles 
could be significantly inhibited by 3-MA, indicating that 
the autophagic pathway was activated. He et al. showed 
that ZnO NPs could induce human osteosarcoma cell 
autophagy accompanied by increased levels of Beclin-1, 
ATG5, and LC3 [67]. Guo et al. confirmed that ZnO NPs-
triggered autophagy activation in human tenon fibroblasts 
by upregulating Atg5, Atg12, and Becn1 in human tenon 
fibroblasts [32]. All these results suggest that activation of 
the autophagic pathway mediated by ZnO NPs plays a par-
ticular role in human MM RPMI8226 cell death.

ZnO NPs exhibit the ability to preferentially kill tumor 
cells compared to normal cells. Studies have shown that 
ZnO NPs have selective cytotoxic effects on acute myeloid 
leukemia, hepatocellular carcinoma, lung adenocarcinoma, 
glioma, breast, and prostate cancer cells, whereas they have 

no effect on normal PBMCs, astrocytes, or hepatocytes [22, 
68, 69]. More interestingly, in vivo studies have shown no 
potential adverse effects on the liver, blood, immune system, 
or bone marrow of broiler chickens given diets containing 
ZnO NPs for long periods of time [70]. These studies reveal 
the safety of ZnO NPs in cancer treatment. In addition, 
although MM is a plasma cell carcinoma, it does not appear 
clinically in the circulation like other hematological disor-
ders (leukemia/lymphoma). Instead, it forms solid lesions 
in the BM. As we did in vitro studies, we were unable to 
evaluate the ability of ZnO NPs to penetrate solid lesions 
and tumors. However, numerous in vivo studies have shown 
that ZnO NPs can reduce the weight and volume of tumors 
in the solid liver [71, 72], lung [73], stomach [74], breast 
[75], osteosarcoma [76], lymphoma [77], and solid Ehrlich 
carcinoma [78] and thus have anticancer potential.

The BM microenvironment (BMM) comprises a cel-
lular compartment (e.g., osteoclasts, osteoblasts, stromal 
cells, and endothelial cells) and a noncellular compartment, 
including the extracellular matrix and the liquid milieu 
(containing cytokines, growth factors, and chemokines) [79, 
80]. Almost all MM plasma cells are strictly dependent on 
their interaction with components of the BMM [81]. Stud-
ies have shown that bone marrow mesenchymal stem cells 
(BM-MSCs) are involved in the construction of the MM 
microenvironment and are closely related to the growth of 
MM cells and bone destruction [82]. Normal bone remod-
eling is based on the balance between bone formation by 
osteoblasts (OBs) and bone degradation by osteoclasts 
(OCs) [83]. MM patients develop bone damage due to the 
imbalance of this homeostasis. The interaction between the 
ZnO NPs-induced autophagic effect and the BMM needs to 
be further investigated.

Fig. 9   Changes in LC3 intensity in RPMI8226 cells. The cells were 
treated with 0 μg/ml (A), 5.0 μg/ml (B), 10.0 μg/ml (C), or 20.0 μg/
ml (D) ZnO NPs for 24  h and then treated with agents from the 

Muse™ Autophagy LC3-antibody-based Kit. LC3 intensity was 
determined using a Muse™ Cell Analyzer. E Statistical analysis of 
LC3 intensity. *P < 0.05 and.***P < 0.001 vs. control sample, n = 3
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As summarized in Fig. 10, exposure of RPMI8226 cells 
to ZnO NPs can significantly stimulate the autophagic sign-
aling pathway, limiting RPMI8226 cell proliferation and 
inducing cell death.

Conclusions

Overall, ZnO NPs exert a dose-dependent inhibitory effect 
on the human MM cell line RPMI8226, increase LDH lev-
els and MDC fluorescence intensity, and induce cell cycle 
arrest at the G2/M phase. In addition, ZnO NPs significantly 
increased the expression of Becn1, Atg5, Atg12, and LC3 
at the mRNA and protein levels, thereby activating the 
autophagic signaling pathway. Our findings pave the way 
for a better understanding of the molecular mechanisms 
by which ZnO NPs inhibit RPMI8226 cell proliferation by 
activating the autophagic signaling pathway. Animal studies 
should be performed next to confirm the therapeutic effects 
of ZnO NPs on MM.
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