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Simple Summary: Brain metastases (BM) are the most common brain tumors in adults, and it
remains a major complication in cancer patients. Exosomes or extracellular vesicles (EV) and
integrins contribute to the development of BM, and exosomal integrins have been shown to determine
organotropic metastasis. To our knowledge, this is the first clinical evidence demonstrating that high
plasma EV integrin β3 level is associated with worse overall survival and intracranial control in
BM patients undergoing whole brain radiotherapy, and supports the determination of organotropic
metastases by exosomal integrins in the clinical setting. As utilization of whole brain radiotherapy for
BM gradually declines in favor of local therapy such as neurosurgery and stereotactic radiosurgery
(SRS), intracranial and distant brain control remain relevant because of the improved survival.
Circulating EV integrin β3 may serve as a novel biomarker in predicting the progression of BM
and survival.

Abstract: Brain metastasis (BM) is a major problem in patients with cancer. Exosomes or extracellular
vesicles (EV) and integrins contribute to the development of BM, and exosomal integrins have been
shown to determine organotropic metastasis. We hypothesized that circulating EV integrins are
able to influence the failure patterns and outcomes in patients treated for BM. We prospectively
enrolled 75 lung cancer patients with BM who received whole brain radiotherapy (WBRT). We
isolated and quantified their circulating EV integrins, and analyzed the association of EV integrins
with clinical factors, survival, and intracranial/extracranial failure. Circulating EV integrin levels
were independent of age, sex, histology, number of BM, or graded prognostic assessment score. Age,
histology, and graded prognostic assessment score correlated with survival. Patients with higher
levels of circulating EV integrin β3 had worse overall survival (hazard ratio: 1.15 per 1 ng/mL
increase; p = 0.04) following WBRT. Multivariate regression analysis also showed a higher cumulative
incidence of intracranial failure (subdistribution hazard ratio: 1.216 per 1 ng/mL increase; p = 0.037).
In conclusion, circulating EV integrin β3 levels correlated with survival and intracranial control
of patients with lung cancer after WBRT for BM. This supports that EV integrin β3 mediates a
brain-tropic metastasis pattern, and may serve as a novel prognostic biomarker for BM.

Keywords: brain metastasis; whole brain radiotherapy; circulating exosomes; exosomal integrins;
extracellular vesicles; biomarker
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1. Introduction

Brain metastases (BM) are the most common brain tumors in adults, and it is estimated
that >20% of patients with cancer will develop BM [1]. As a result of improvements in
diagnostic modalities, systemic control, and longer survival, the incidence of BM appears
to be increasing [2]. Lung cancer is both the most commonly diagnosed type of cancer and
the leading cause of cancer-related deaths [3]. Moreover, it is one of the types of cancer
most frequently associated with BM [4,5]. Despite advances in multimodal treatment and
systemic therapies, BM remains a major contributor to lung cancer-related mortality, while
burdening patient quality of life and resources [6].

The prognosis of patients with BM depends on various factors, including age, perfor-
mance status, primary disease control, presence of extracranial metastases, and treatment
status [7,8]. In addition, non-small cell lung cancer (NSCLC) patients with activating muta-
tions, such as epidermal growth factor receptor mutations (EGFR) or anaplastic lymphoma
kinase (ALK) translocations, may have longer survival than wild-type patients [9]. The
lung-molecular graded prognostic assessment (GPA) score is a revision of the disease-
specific GPA to predict the survival of lung cancer patients with BM by incorporating
molecular markers (EGFR and ALK alterations) along with the four established factors
(age, Karnofsky performance status, extracranial metastases, and number of metastases) in
patients with adenocarcinoma [10].

Cancer metastasis involves changes in cell–cell contact and cell–extracellular matrix
adhesion [11]. Integrins, as the primary cell–matrix adhesion receptor, regulate tumor
cell survival, stemness, and metastatic potential [12]. Colonization of a distant metastatic
niche has been linked to the interaction between certain extracellular matrix proteins
and integrins [13,14]. Integrin αvβ3, which is typically absent in normal brain stroma or
vasculature, is abundant within angiogenic vessels in the peritumoral area of BM [15,16]
and promotes intracranial metastatic growth [17]. On the other hand, integrin αvβ6-
positive BM typically present with well-demarcated lesions and is associated with more
favorable outcomes [18].

Exosomes or extracellular vesicles (EV) are small membrane vesicles (30–150 nm)
containing functional biomolecules (i.e., proteins, lipids, RNA, and DNA) that can be
transferred horizontally to recipient cells [19]. It has been shown that the secretion of EV by
cancer cells can lead to pre-metastatic niche formation and subsequent metastasis [20–22],
and exosomal integrins have been linked to specific organotropic metastatic patterns [23].
As surgical excision or biopsy of multiple BM is often impractical in clinical settings, the
evaluation of circulating EV and associated integrins as biomarkers is attractive and may
serve as a potential surrogate for an overview of the tumor integrin “landscape” that may
influence the outcome. We hypothesized that circulating EV integrins are able to influence
the failure pattern (intracranial versus extracranial) in patients treated for BM, and may
serve as a novel biomarker independent of disease-specific GPA and other clinical factors
for the prediction of survival. In particular, we proposed that circulating EV integrin β3
could be a potential prognostic biomarker regarding the development and progression of
BM, as well as survival.

2. Results
2.1. Patient Characteristics and Outcomes

Between March 2015 and July 2019, 75 patients with BM originating from primary lung
cancer were enrolled and received whole brain radiotherapy. The patient characteristics
are summarized in Table 1. The median age was 61 years, and the majority of patients
(76%) had ≥5 BM. The most common histology was adenocarcinoma (81%), and four
patients had small-cell carcinoma primaries, typical for the East Asian lung cancer cohort.
In terms of GPA score, 16%, 44%, 36%, and 4% had a score of 0–1.0, 1.5–2.0, 2.5–3.0, and
3.5–4.0, respectively. Six patients had received prior stereotactic radiosurgery to brain
metastases. The median time from diagnosis of BM to whole brain radiotherapy (WBRT)
was 102 days (range: 11–1636 days). Forty-nine patients (65%) were treated with conformal
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volumetric-modulated radiation therapy. At the median follow-up at 8.0 months (range:
0.7–52.1 months), death or intracranial progression had occurred in 76% of patients.

Table 1. Patient characteristics and clinical outcomes.

Characteristics Number %

Number of Patients 75 100%

Median age, years (range) 61 (38–81)

Gender
Male 40 53.3%

Female 35 46.7%

Prior SRS 6 8.0%

Number of brain metastases
<5 18 24.0%

5–10 17 22.7%
>10 40 53.3%

Leptomeningeal seeding 45 60.0%

Histology
Adenocarcinoma 61 81.3%

Squamous cell carcinoma 4 5.3%
Non-small cell carcinoma, NOS 5 6.7%

Small cell carcinoma 4 5.3%
Adenosquamous 1 1.3%

GPA
0–1.0 12 16.0%

1.5–2.0 33 44.0%
2.5–3.0 27 36.0%
3.5–4.0 3 4.0%

Median follow-up, months (range) 8.0 (0.7–52.1)

Death
Yes 44 58.7%
No 31 41.3%

Intracranial progression after WBRT
Yes 37 49.3%
No 31 41.3%

Unknown 7 9.3%

Salvage treatment
Surgery + SRS 1 1.3%

SRS 3 4.0%
SRT 2 2.7%
TKI 2 2.7%

WBRT + Bev 3 4.0%

Extracranial progression
Yes 45 60.0%
No 23 30.7%

Unknown 7 9.3%
Abbreviations: NOS, not otherwise specified; GPA, graded prognostic assessment; WBRT, whole brain ra-
diotherapy; SRS, stereotactic radiosurgery; SRT, stereotactic radiotherapy; TKI, tyrosine kinase inhibitor; Bev,
bevacizumab.

The median OS, IC-PFS, and EC-PFS for the entire cohort were 14 months (95% confi-
dence interval [CI]: 6.6–21.6 months), 7.9 months (95% CI: 7.1–8.7 months), and 5.1 months
(95% CI: 4.1–6.1 months), respectively (Figure 1). Patients with adenocarcinoma primaries
had significant longer OS than those with non-adenocarcinoma primaries (median OS:
17.1 months vs. 4.2 months, respectively; p = 0.003) (Figure 2A). In addition, patients with
higher GPA scores also had longer survival times (median OS: GPA score 0–1.0: 4.2 months;
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1.5–2.0: 9.5 months; 2.5–3.0: 17.1 months; 3.5–4.0: 26.4 months; p = 0.005) (Figure 2B). There
was a trend toward the worse survival with advancing age (hazard ratio [HR]: 1.32 per
10-year increase; p = 0.123).
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Figure 2. Survival outcomes by histology and GPA. Kaplan–Meier curves of overall survival stratified by histology subtype
(A) and lung-molecular GPA score (B). The shaded area represents the 95% confidence interval. Abbreviations: GPA; graded
prognostic assessment.

Similarly, patients with adenocarcinoma primaries showed significantly longer IC-PFS
than those with non-adenocarcinoma primaries (median IC-PFS: 8.0 months vs. 3.5 months,
respectively; p = 0.002). Higher GPA scores were also associated with better IC-PFS (median
IC-PFS: GPA score 0–1.0: 3.6 months; 1.5–2.0: 8.0 months; 2.5–3.0: 9.1 months; 3.5–4.0:
19.8 months; p = 0.002), and there was a trend toward worse IC-PFS with advancing age
(HR: 1.32 per 10-year increase; p = 0.104). In contrast, EC-PFS was longer in patients
with adenocarcinoma (median EC-PFS: 5.6 months vs. 2.4 months; p = 0.02) and younger
patients (HR: 1.38 per 10-year increase; p = 0.026), but only trended toward better EC-PFS
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with higher GPA scores. The survival outcomes did not differ in relation to sex, number of
BM, or presence of leptomeningeal carcinomatosis (Table S1 in Supplementary Materials).

2.2. Expression of Circulating Extracellular Vesicles Integrins

Our literature review identified two subtypes of circulating EV integrins (integrin
β3 and integrin β6) of particular interest. The median expression level of integrin β3
was 1.668 ng/mL (range: 0–38.501 ng/mL; 1st quartile: 0.955 ng/mL; 3rd quartile:
2.692 ng/mL), and the median expression levels of integrin β6 were 2.024 ng/mL (range:
0.654–13.814 ng/mL; 1st quartile: 1.373 ng/mL; 3rd quartile: 3.036 ng/mL). The medians
of circulating EV integrin β3 and integrin β6 concentrations did not differ in relation to
histology, number of BM, GPA score (Figure 3), age, or sex (not shown). Extreme out-
liers (integrin β3: 38.501 ng/mL and integrin β6: 13.814 ng/mL), both markedly higher
than the 3rd quartile plus five-fold their respective interquartile ranges, were identified.
Interestingly, both outliers were noted in the same patient (a 50-year-old male who had
adenocarcinoma primary, >10 BM, and GPA score of 2.5). This particular patient expe-
rienced extracranial progression and subsequent death 8 months after receiving WBRT,
without evidence of intracranial failure.
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Figure 3. Distribution of extracellular vesicles integrin concentrations. Boxplots and scatterplots showing the distribution
of circulating extracellular vesicles integrin (evITG) β3 (upper row) and evITG β6 (lower row) by the number of brain
metastases (left), histology subtype (middle), and GPA score (right). Abbreviations: GPA; graded prognostic assessment.

2.3. Expression of Circulating EV Integrins Independently Predicted Outcomes for BM

High levels of circulating EV integrin β3 correlated significantly with worse OS (HR:
1.15 per 1 ng/mL increase; 95% CI: 1.01–1.32; p = 0.04). The maximally selected log-rank
statistics suggested that the optimal cut-point was 1.818 ng/mL, and the resultant high
integrin β3 level group (>1.818 ng/mL) demonstrated shorter OS compared with the lower
integrin β3 level group (≤1.818 ng/mL) (median OS: 6.5 vs. 18.9 months, respectively; HR:
2.12; 95% CI: 1.16–3.87; p = 0.01, Figure 4A). On the other hand, circulating EV integrin β6
did not correlate with OS (HR: 1.06 per 1 ng/mL increase; 95% CI: 0.869–1.29; p = 0.56). The
univariate analysis of prognostic factors associated with OS were shown in Table S2. On
multivariate Cox regression analysis, age, histology, GPA score, and circulating EV integrin
β3 levels were significantly associated with OS, whereas sex and integrin β6 levels did not
show significant correlations (Table 2).
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Table 2. Multivariate Cox regression analysis of factors associated with overall survival.

Prognostic Factors HR 95% CI p-Value

Age (per 1-year increase) 1.04 1.00–1.08 0.04 *
Sex (female vs. male) 1.22 0.55–2.72 0.62

Histology (adenocarcinoma vs. non-adenocarcinoma) 0.38 0.18–0.83 0.02 *
GPA score (high vs. low) 0.21 0.09–0.45 <0.001 *

Integrin β3 (per 1-ng/mL increase) 1.25 1.04–1.49 0.02 *
Integrin β6 (per 1-ng/mL increase) 0.90 0.68–1.18 0.44

Abbreviations: HR, hazard ratio; CI, confidence interval; vs., versus; GPA, graded prognostic assessment. Asterisk
denotes significance.

The 6-month and 1-year cumulative incidence of intracranial failure in the high in-
tegrin β3 level group were 39.0% and 61.7%, respectively, compared to 4.8% and 36.5%
in the low integrin β3 level group (p = 0.036, Figure 4B), with death as the competing
risk. The cumulative incidence of intracranial failure did not differ in relation to integrin
β6 levels (p = 0.68). The univariate competing risk analysis of prognostic factors asso-
ciated with intracranial failure were shown in Table S3. On the multivariate competing
risk regression model, only integrin β3 correlated with intracranial failure (subdistribu-
tion HR: 1.216 per 1 ng/mL increase; 95% CI: 1.012–1.46; p = 0.037), while the GPA score
demonstrated correlation with the competing cause (death without intracranial failure),
with age and histology exhibiting a non-significant trend (Table 3). Sex and integrin β6
levels did not show a significant correlation. In contrast, the multivariate competing risk
regression model of extracranial failure did not reveal significant correlation with any of
the aforementioned factors (Table 3).

Table 3. Competing risk regression analyses of factors associated with intracranial and extracra-
nial failures.

Intracranial Failure sHR 95% CI p-Value

Age (per 1-year increase) 1.021 0.969–1.07 0.44
Sex (female vs. male) 0.817 0.438–1.52 0.52

Histology (adenocarcinoma vs. non-adenocarcinoma) 1.235 0.463–3.30 0.67
GPA score (high vs. low) 2.059 0.823–5.15 0.12

Integrin β3 (per 1-ng/mL increase) 1.216 1.012–1.46 0.037 *
Integrin β6 (per 1-ng/mL increase) 0.868 0.679–1.11 0.26
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Table 3. Cont.

Intracranial Failure sHR 95% CI p-Value

Intracranial failure (using cut-off points for integrin levels)

Age (per 1-year increase) 1.033 0.983–1.09 0.2
Sex (female vs. male) 0.833 0.436–1.59 0.58

Histology (adenocarcinoma vs. non-adenocarcinoma) 1.274 0.417–3.89 0.67
GPA score (high vs. low) 1.939 0.758–4.96 0.17

High integrin β3 (>1.818 ng/mL vs. ≤1.818 ng/mL) 2.147 1.106–4.17 0.024 *
High integrin β6 (>1.99 ng/mL vs. ≤1.99 ng/mL) 0.796 0.421–1.51 0.48

Extracranial failure

Age (per 1-year increase) 1.003 0.968–1.04 0.88
Sex (female vs. male) 0.813 0.437–1.51 0.51

Histology (adenocarcinoma vs. non-adenocarcinoma) 2.013 0.664–6.10 0.22
GPA score (high vs. low) 0.619 0.319–1.20 0.16

Integrin β3 (per 1-ng/mL increase) 1.052 0.830–1.33 0.68
Integrin β6 (per 1-ng/mL increase) 0.974 0.707–1.34 0.87

Abbreviations: sHR, subdistribution hazard ratio; CI, confidence interval; GPA, graded prognostic assessment;
vs., versus. Asterisk denotes significance.

3. Discussion

We demonstrated that circulating EV integrin β3 is associated with the clinical out-
comes of BM in patients with lung cancer. Patients with high plasma EV integrin β3
expression had worse OS and intracranial control after WBRT. To our knowledge, this is the
first clinical evidence indicating that EV integrin β3 is a novel biomarker for predicting the
progression of BM and poor survival, and supports our hypothesis that the determination
of organotropic metastases using EV integrins is possible.

Our results suggest that the circulating EV integrin β3 or β6 levels are independent
from age, sex, histology, number of BM, or GPA score. The relationship between the tumor
cellular expression of integrin (either in primary tumors or metastases) and EV integrin
levels has not been established yet; however, evidence supporting integrin transfer via
tumor cell-derived EV is growing [24–26]. Surgical pathological data have demonstrated
that the majority of NSCLC express the αv-integrins αvβ5 and αvβ6, and to a lesser extent
αvβ3 and αvβ8 [16]. However, in specimens from primary tumors, these integrins were
not correlated with tumor proliferation, nodal spread, or survival [27]. Overexpression of
αv-integrin had been shown to enhance the cell migration rate and lead to increased BM in
a murine model [28]. As our study enrolled patients with pre-existing BM, the distribution
of EV integrins was expected to be different from that observed in patients without BM
at baseline.

The positive correlation between increasing EV integrin β3 levels and early intracranial
failure after WBRT attested to the tendency of BM to occur in patients with high EV integrin
β3 levels. Accumulating evidence on exosome-mediated organ-specific conditioning has
shed light on Stephen Paget’s “seed-and-soil” hypothesis [29], which was proposed 131
years ago. In the landmark article published in Nature, Hoshino et al. demonstrated that
the tumor exosome integrins α6β4/α6β1 and integrin αvβ5 were associated with lung and
liver metastasis, respectively, while integrin β3 was present in exosomes isolated from brain-
tropic cells [23]. Another recent study also showed that prostate cancer cells transferred
integrin αvβ3 via EV, and the recipient cells exhibited a pro-metastatic phenotype [25]. Our
results corroborated these findings in the clinical setting. In addition, a study also showed
that tumor exosomal cell migration-inducing and hyaluronan-binding protein (CEMIP) can
promote BM [30], highlighting the complexity of cross-talk between different molecules.

Furthermore, our study demonstrates that increasing circulating EV integrin β3 levels
are associated with worse survival. The median survival of 14 months was in line with that
noted in earlier cohorts, considering the distribution of GPA and the extent of BM requiring
WBRT [10]. However, both the survival curves and cumulative incidence of intracranial
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progression between the high and low integrin β3 level groups converged as follow-up
time exceeded 18–24 months. This observation indicated the generally poor prognoses of
those patients and potential phenotypic changes in metastatic behavior later in the disease
course. The EV microRNA (miRNA) profile, specifically the tumor suppressor miRNA
let-7f, has also been shown to correlate with survival in patients with lung cancer [31].
Several EV miRNAs have also been linked to an increased incidence of metastases [32,33],
suggesting multiple pathways through which EV could impact survival.

In contrast, EV integrin β6 levels were not associated with either a specific failure
pattern or survival in our study. The upregulation of integrin ανβ6 expression is associated
with poor prognosis in many types of cancer [34]. However, data concerning integrin β6
have been less clear, as surgical pathological data from primary NSCLC did not show
any evidence of worse outcomes with integrin ανβ6 expression [27]. Notably, survival
appeared to be better in non-squamous NSCLC patients with BM expressing integrin
ανβ6 [18]. EV integrin β6 levels may be an indicator of worse tumor biology [34], but we
speculate that other factors, such as EV integrin β3, may dominate the development and
progression of BM.

As utilization of WBRT for limited BM gradually declines in favor of local therapies
such as neurosurgery and stereotactic radiosurgery (SRS), intracranial and distant brain
control remain relevant because of the improved survival times, and have become a concern
without the use of WBRT [35,36]. A secondary analysis of the Japanese Radiation Oncology
Study Group 99-1 randomized trial suggested that adjuvant WBRT after SRS may improve
the survival rates in NSCLC patients with favorable prognoses [37], emphasizing the
importance of intracranial control in certain patients with expected long-term survival.
Metrics such as brain metastasis velocity after initial SRS had also been introduced [38].
EV integrin β3 may as well serve as a novel biomarker in predicting the development of
BM and survival. Analyses of an independent SRS cohort and additional EV component
repertoires are mandatory and currently underway, and our study provides evidence that
circulating EV integrin signatures may aid clinical decision-making for patients with BM.
Those with high circulating EV integrin β3 plus additional poor prognostic factor (e.g.,
low GPA score) may consider short-course WBRT or hospice care. An alternative systemic
therapy with superior central nervous system (CNS) penetration to overcome blood-brain
barrier for intracranial control as well as a more frequent CNS imaging follow-up schedule
for early salvage therapy might be required for patients with increased circulating EV
integrin β3.

The potential limitations of our study include the following: (1) The absence of
pathological specimens to determine the relationship between the EV integrin levels and
cellular expression of integrins makes its source a matter of debate; (2) insufficient data to
analyze changes in EV integrin levels upon recurrence; and (3) possible inconsistencies in
EV isolation and integrin quantification, which may be inherent as standardized protocols
and reference levels were lacking at the time of assessment, thus limiting generalizability.

4. Materials and Methods

All patients were pathologically and/or cytologically diagnosed with radiographic
evidence of BM, and provided informed consent at the time of enrollment. The present
study cohort were treated with WBRT at the discretion of the attending radiation oncolo-
gist. In accordance with contemporary guidelines, radiotherapy with 30 Gy in 10 fractions
was delivered with a linear accelerator using 6 MV photons. Two-/three-dimensional or
conformal volumetric-modulated radiation therapy techniques with or without hippocam-
pal avoidance were applied. Patient and tumor characteristics, including disease-specific
GPA [8]/lung-molecular GPA [10], age, Karnofsky performance status, extracranial metas-
tasis, number of BM, and driver mutation status were recorded at baseline. Blood samples
were collected in the tubes containing anticoagulant EDTA prior to radiotherapy according
to the protocol. Patients were followed up at 1, 2, 4, 6, 9, and 12 months, and every 3
months thereafter, until unequivocal intracranial progression, death, or patient withdrawal
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(whichever came first). Intracranial response was assessed according to the Response
Assessment in Neuro-Oncology Brain Metastases criteria [39].

The EV were isolated from 1mL of stored plasma by size exclusion purification using
Exo-SpinTM Midi Columns (Cell Guidance Systems, St. Louis, MO, USA) according to
the protocol provided by the manufacturer. The circulating EV integrins β3 and β6 were
subsequently measured with an enzyme-linked immunosorbent assay (ELISA) using a
commercially available human protein sandwich enzyme immunoassay kit (category
numbers AE37655HU & AE37642HU; Wuhan Abebio Science Co., Ltd., Wuhan, China).
Concentrations of integrins in EV were determined against a standard curve.

Overall survival (OS) was measured from the day of enrollment to death. Intracranial
progression-free survival (IC-PFS) and extracranial progression-free survival (EC-PFS)
were calculated from enrollment to death or until radiographic evidence of progression
and/or recurrence of BM or leptomeningeal carcinomatosis, and extracranial progression,
respectively. Patients without a known date of progression were censored at the time of the
last follow-up. Correlations between the medians of circulating EV integrin concentration
of subgroups were assessed with the Kruskal–Wallis test. The correlations between survival
and EV integrin concentrations were assessed with univariate Cox proportional hazard
regression. Extreme outliers were identified using Grubb’s method [40], and remained
within their respective dichotomized categories for robustness of the analyses. However,
they were trimmed in respective continuous variables to avoid bias in the regression
analyses. As clinically relevant thresholds have not been established, we utilized maximally
selected log-rank statistics to define cut-points according to differences in survival [41].
For comparison, we dichotomized graded prognostic assessment scores into high (2.0–4.0)
and low (0–1.5). The groups were compared using Pearson chi-squared and Fisher’s
exact tests, as appropriate. Kaplan–Meier analysis was used to estimate OS, IC-PFS, and
EC-PFS, and these finding were compared between groups using log-rank tests. The
cumulative incidence of intracranial and extracranial failure was assessed using competing-
risks analyses with death as the competing risk, and groups were compared using Gray’s
method [42]. Multivariate regression analyses were performed using the Cox proportional
hazards model for OS, and subdistribution hazards model proposed by Fine–Gray [43] for
intracranial and extracranial failure, considering death as the competing risk. Statistical
analysis was performed with the IBM SPSS, version 25.0 (IBM Corp., Armonk, NY, USA)
and R, version 3.6.0 (Free Software Foundation, Boston, MA, USA) with packages survival,
maxstat, and cmprsk.

5. Conclusions

This prospective study identified circulating EV integrin β3 as a potential novel
BM-specific biomarker to predict the outcomes after WBRT in patients with lung cancer.
Patients with high circulating EV integrin β3 levels have worse intracranial control and poor
survival outcomes, independent of the graded prognostic assessment for lung cancer using
molecular markers. The translational evidence suggests that EV abundant in integrin β3
are brain-tropic in lung cancer. This finding requires validation in an independent cohort.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/3/380/s1, Table S1. Clinical factors associated with intracranial progression-free survival
and extracranial progression-free survival. Table S2. Univariate Cox regression analysis of factors
associated with overall survival. Table S3. Univariate subdistribution hazards for factors associated
with intracranial failure with death as competing risk.

Author Contributions: Conceptualization, F.-M.H.; methodology, F.-M.H.; validation, J.C.-H.C.,
Y.-F.C., J.C.-H.Y. and F.-M.H.; formal analysis, G.-Y.C.; investigation, G.-Y.C., Y.-F.C. and F.-M.H.;
resources, F.-M.H.; data curation, G.-Y.C. and F.-M.H.; writing—original draft preparation, G.-Y.C.
and F.-M.H.; writing—review and editing, J.C.-H.C., J.C.-H.Y.; visualization, G.-Y.C.; supervision,
J.C.-H.C., J.C.-H.Y.; project administration, F.-M.H.; funding acquisition, F.-M.H. All authors have
read and agreed to the published version of the manuscript.

https://www.mdpi.com/2072-6694/13/3/380/s1
https://www.mdpi.com/2072-6694/13/3/380/s1


Cancers 2021, 13, 380 10 of 11

Funding: The study received funding from Ministry of Science and Technology, Executive Yuan,
Taipei, Taiwan. Number: 107-2314-B-002-098.

Institutional Review Board Statement: This study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by National Taiwan University Hospital Research Ethic
Committee on 9 July 2018, [ethic code/project number: 201805115RINB].

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy or ethical restriction.

Acknowledgments: We acknowledge the service and support provided by the Eighth Core Lab at
Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.;

Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Prim. 2019, 5, 5. [CrossRef]
2. Eichler, A.F.; Chung, E.; Kodack, D.P.; Loeffler, J.S.; Fukumura, D.; Jain, R.K. The biology of brain metastases-translation to new

therapies. Nat. Rev. Clin. Oncol. 2011, 8, 344–356. [CrossRef] [PubMed]
3. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]
4. Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al.

Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: A population-based study.
Neuro-Oncology 2017, 19, 1511–1521. [CrossRef] [PubMed]

5. Sorensen, J.B.; Hansen, H.H.; Hansen, M.; Dombernowsky, P. Brain metastases in adenocarcinoma of the lung: Frequency, risk
groups, and prognosis. J. Clin. Oncol. 1988, 6, 1474–1480. [CrossRef]

6. Peters, S.; Bexelius, C.; Munk, V.; Leighl, N. The impact of brain metastasis on quality of life, resource utilization and survival in
patients with non-small-cell lung cancer. Cancer Treat. Rev. 2016, 45, 139–162. [CrossRef]

7. Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive partitioning
analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int. J. Radiat.
Oncol. 1997, 37, 745–751. [CrossRef]

8. Sperduto, P.W.; Kased, N.; Roberge, D.; Xu, Z.; Shanley, R.; Luo, X.; Sneed, P.K.; Chao, S.T.; Weil, R.J.; Suh, J.; et al. Summary
report on the graded prognostic assessment: An accurate and facile diagnosis-specific tool to estimate survival for patients with
brain metastases. J. Clin. Oncol. 2012, 30, 419–425. [CrossRef]

9. Balasubramanian, S.K.; Sharma, M.; Venur, V.A.; Schmitt, P.; Kotecha, R.; Chao, S.T.; Suh, J.H.; Angelov, L.; Mohammadi, A.M.;
Vogelbaum, M.A.; et al. Impact of EGFR mutation and ALK rearrangement on the outcomes of non-small cell lung cancer patients
with brain metastasis. Neuro-Oncology 2020, 22, 267–277. [CrossRef]

10. Sperduto, P.W.; Yang, T.J.; Beal, K.; Pan, H.; Brown, P.D.; Bangdiwala, A.; Shanley, R.; Yeh, N.; Gaspar, L.E.; Braunstein, S.; et al.
Estimating Survival in Patients with Lung Cancer and Brain Metastases: An Update of the Graded Prognostic Assessment for
Lung Cancer Using Molecular Markers (Lung-molGPA). JAMA Oncol. 2017, 3, 827–831. [CrossRef]

11. Stetler-Stevenson, W.G.; Aznavoorian, S.; Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and
metastasis. Annu. Rev. Cell Biol. 1993, 9, 541–573. [CrossRef] [PubMed]

12. Seguin, L.; Desgrosellier, J.S.; Weis, S.M.; Cheresh, D.A. Integrins and cancer: Regulators of cancer stemness, metastasis, and drug
resistance. Trends Cell Biol. 2015, 25, 234–240. [CrossRef] [PubMed]

13. Malanchi, I.; Santamaria-Martinez, A.; Susanto, E.; Peng, H.; Lehr, H.A.; Delaloye, J.F.; Huelsken, J. Interactions between cancer
stem cells and their niche govern metastatic colonization. Nature 2011, 481, 85–89. [CrossRef]

14. Oskarsson, T.; Acharyya, S.; Zhang, X.H.; Vanharanta, S.; Tavazoie, S.F.; Morris, P.G.; Downey, R.J.; Manova-Todorova, K.; Brogi,
E.; Massague, J. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 2011, 17,
867–874. [CrossRef] [PubMed]

15. Berghoff, A.S.; Rajky, O.; Winkler, F.; Bartsch, R.; Furtner, J.; Hainfellner, J.A.; Goodman, S.L.; Weller, M.; Schittenhelm, J.; Preusser,
M. Invasion patterns in brain metastases of solid cancers. Neuro-Oncology 2013, 15, 1664–1672. [CrossRef]

16. Vogetseder, A.; Thies, S.; Ingold, B.; Roth, P.; Weller, M.; Schraml, P.; Goodman, S.L.; Moch, H. alphav-Integrin isoform expression
in primary human tumors and brain metastases. Int. J. Cancer 2013, 133, 2362–2371. [CrossRef]

17. Lorger, M.; Krueger, J.S.; O’Neal, M.; Staflin, K.; Felding-Habermann, B. Activation of tumor cell integrin alphavbeta3 controls
angiogenesis and metastatic growth in the brain. Proc. Natl. Acad. Sci. USA 2009, 106, 10666–10671. [CrossRef]

http://doi.org/10.1038/s41572-018-0055-y
http://doi.org/10.1038/nrclinonc.2011.58
http://www.ncbi.nlm.nih.gov/pubmed/21487419
http://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://doi.org/10.1093/neuonc/nox077
http://www.ncbi.nlm.nih.gov/pubmed/28444227
http://doi.org/10.1200/JCO.1988.6.9.1474
http://doi.org/10.1016/j.ctrv.2016.03.009
http://doi.org/10.1016/S0360-3016(96)00619-0
http://doi.org/10.1200/JCO.2011.38.0527
http://doi.org/10.1093/neuonc/noz155
http://doi.org/10.1001/jamaoncol.2016.3834
http://doi.org/10.1146/annurev.cb.09.110193.002545
http://www.ncbi.nlm.nih.gov/pubmed/8280471
http://doi.org/10.1016/j.tcb.2014.12.006
http://www.ncbi.nlm.nih.gov/pubmed/25572304
http://doi.org/10.1038/nature10694
http://doi.org/10.1038/nm.2379
http://www.ncbi.nlm.nih.gov/pubmed/21706029
http://doi.org/10.1093/neuonc/not112
http://doi.org/10.1002/ijc.28267
http://doi.org/10.1073/pnas.0903035106


Cancers 2021, 13, 380 11 of 11

18. Berghoff, A.S.; Kovanda, A.K.; Melchardt, T.; Bartsch, R.; Hainfellner, J.A.; Sipos, B.; Schittenhelm, J.; Zielinski, C.C.; Widhalm, G.;
Dieckmann, K.; et al. alphavbeta3, alphavbeta5 and alphavbeta6 integrins in brain metastases of lung cancer. Clin. Exp. Metastasis
2014, 31, 841–851. [CrossRef]

19. Maia, J.; Caja, S.; Strano Moraes, M.C.; Couto, N.; Costa-Silva, B. Exosome-Based Cell-Cell Communication in the Tumor
Microenvironment. Front. Cell Dev. Biol. 2018, 6, 18. [CrossRef]

20. Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; et al.
Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 2015, 17, 816–826. [CrossRef]

21. Peinado, H.; Aleckovic, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, G.; Hergueta-Redondo, M.; Williams, C.;
Garcia-Santos, G.; Ghajar, C.; et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype
through MET. Nat. Med. 2012, 18, 883–891. [CrossRef]

22. Peinado, H.; Zhang, H.; Matei, I.R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R.N.; Bromberg, J.F.;
Kang, Y.; et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer 2017, 17, 302–317. [CrossRef]
[PubMed]

23. Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.;
Ceder, S.; et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329–335. [CrossRef] [PubMed]

24. Fedele, C.; Singh, A.; Zerlanko, B.J.; Iozzo, R.V.; Languino, L.R. The alphavbeta6 integrin is transferred intercellularly via
exosomes. J. Biol. Chem. 2015, 290, 4545–4551. [CrossRef] [PubMed]

25. Singh, A.; Fedele, C.; Lu, H.; Nevalainen, M.T.; Keen, J.H.; Languino, L.R. Exosome-mediated Transfer of alphavbeta3 Integrin
from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol. Cancer Res. 2016, 14, 1136–1146. [CrossRef]
[PubMed]

26. Krishn, S.R.; Singh, A.; Bowler, N.; Duffy, A.N.; Friedman, A.; Fedele, C.; Kurtoglu, S.; Tripathi, S.K.; Wang, K.; Hawkins, A.; et al.
Prostate cancer sheds the alphavbeta3 integrin in vivo through exosomes. Matrix Biol. 2019, 77, 41–57. [CrossRef] [PubMed]

27. Boger, C.; Kalthoff, H.; Goodman, S.L.; Behrens, H.M.; Rocken, C. Integrins and their ligands are expressed in non-small cell lung
cancer but not correlated with parameters of disease progression. Virchows Arch. 2014, 464, 69–78. [CrossRef]

28. Wu, Y.J.; Pagel, M.A.; Muldoon, L.L.; Fu, R.; Neuwelt, E.A. High alphav Integrin Level of Cancer Cells Is Associated with
Development of Brain Metastasis in Athymic Rats. Anticancer Res. 2017, 37, 4029–4040. [CrossRef]

29. Paget, S. The Distribution of Secondary Growths in Cancer of the Breast. Lancet 1889, 133, 571–573. [CrossRef]
30. Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova-

Salas, I.; et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 2019, 21,
1403–1412. [CrossRef]

31. Silva, J.; Garcia, V.; Zaballos, A.; Provencio, M.; Lombardia, L.; Almonacid, L.; Garcia, J.M.; Dominguez, G.; Pena, C.; Diaz, R.; et al.
Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur. Respir. J. 2011, 37,
617–623. [CrossRef] [PubMed]

32. Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.; Chin, A.R.; et al. Cancer-
secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014, 25, 501–515. [CrossRef] [PubMed]

33. Le, M.T.; Hamar, P.; Guo, C.; Basar, E.; Perdigao-Henriques, R.; Balaj, L.; Lieberman, J. miR-200-containing extracellular vesicles
promote breast cancer cell metastasis. J. Clin. Investig. 2014, 124, 5109–5128. [CrossRef] [PubMed]

34. Niu, J.; Li, Z. The roles of integrin alphavbeta6 in cancer. Cancer Lett. 2017, 403, 128–137. [CrossRef] [PubMed]
35. Aoyama, H.; Shirato, H.; Tago, M.; Nakagawa, K.; Toyoda, T.; Hatano, K.; Kenjyo, M.; Oya, N.; Hirota, S.; Shioura, H.; et al.

Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases:
A randomized controlled trial. JAMA 2006, 295, 2483–2491. [CrossRef]

36. Kocher, M.; Soffietti, R.; Abacioglu, U.; Villa, S.; Fauchon, F.; Baumert, B.G.; Fariselli, L.; Tzuk-Shina, T.; Kortmann, R.D.;
Carrie, C.; et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three
cerebral metastases: Results of the EORTC 22952-26001 study. J. Clin. Oncol. 2011, 29, 134–141. [CrossRef]

37. Aoyama, H.; Tago, M.; Shirato, H.; Japanese Radiation Oncology Study Group Investigators. Stereotactic Radiosurgery with
or without Whole-Brain Radiotherapy for Brain Metastases: Secondary Analysis of the JROSG 99-1 Randomized Clinical Trial.
JAMA Oncol. 2015, 1, 457–464. [CrossRef]

38. Farris, M.; McTyre, E.; Hughes, R.T.; Ayala-Peacock, D.N.; Randolph, D.M.; Bourland, J.D.; Tatter, S.B.; Laxton, A.W.; Watabe, K.;
Ruiz, J.; et al. Brain Metastasis Velocity: A Novel Prognostic Metric Predictive of Overall Survival and Freedom from Whole-Brain
Radiation Therapy After Upfront Radiosurgery Alone for Brain Metastases. Int. J. Radiat. Oncol. 2016, 96, S180. [CrossRef]

39. Lin, N.U.; Lee, E.Q.; Aoyama, H.; Barani, I.J.; Barboriak, D.P.; Baumert, B.G.; Bendszus, M.; Brown, P.D.; Camidge, D.R.;
Chang, S.M.; et al. Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol. 2015, 16,
e270–e278. [CrossRef]

40. Grubbs, F.E. Sample Criteria for Testing Outlying Observations. Ann. Math. Stat. 1950, 21, 27–58. [CrossRef]
41. Lausen, B.; Schumacher, M. Maximally Selected Rank Statistics. Biometrics 1992, 48, 73. [CrossRef]
42. Gray, R.J. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. Ann. Stat. 1988, 16, 1141–1154.

[CrossRef]
43. Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stat. Assoc. 1999, 94,

496–509. [CrossRef]

http://doi.org/10.1007/s10585-014-9675-0
http://doi.org/10.3389/fcell.2018.00018
http://doi.org/10.1038/ncb3169
http://doi.org/10.1038/nm.2753
http://doi.org/10.1038/nrc.2017.6
http://www.ncbi.nlm.nih.gov/pubmed/28303905
http://doi.org/10.1038/nature15756
http://www.ncbi.nlm.nih.gov/pubmed/26524530
http://doi.org/10.1074/jbc.C114.617662
http://www.ncbi.nlm.nih.gov/pubmed/25568317
http://doi.org/10.1158/1541-7786.MCR-16-0058
http://www.ncbi.nlm.nih.gov/pubmed/27439335
http://doi.org/10.1016/j.matbio.2018.08.004
http://www.ncbi.nlm.nih.gov/pubmed/30098419
http://doi.org/10.1007/s00428-013-1506-1
http://doi.org/10.21873/anticanres.11788
http://doi.org/10.1016/S0140-6736(00)49915-0
http://doi.org/10.1038/s41556-019-0404-4
http://doi.org/10.1183/09031936.00029610
http://www.ncbi.nlm.nih.gov/pubmed/20595154
http://doi.org/10.1016/j.ccr.2014.03.007
http://www.ncbi.nlm.nih.gov/pubmed/24735924
http://doi.org/10.1172/JCI75695
http://www.ncbi.nlm.nih.gov/pubmed/25401471
http://doi.org/10.1016/j.canlet.2017.06.012
http://www.ncbi.nlm.nih.gov/pubmed/28634043
http://doi.org/10.1001/jama.295.21.2483
http://doi.org/10.1200/JCO.2010.30.1655
http://doi.org/10.1001/jamaoncol.2015.1145
http://doi.org/10.1016/j.ijrobp.2016.06.451
http://doi.org/10.1016/S1470-2045(15)70057-4
http://doi.org/10.1214/aoms/1177729885
http://doi.org/10.2307/2532740
http://doi.org/10.1214/aos/1176350951
http://doi.org/10.1080/01621459.1999.10474144

	Introduction 
	Results 
	Patient Characteristics and Outcomes 
	Expression of Circulating Extracellular Vesicles Integrins 
	Expression of Circulating EV Integrins Independently Predicted Outcomes for BM 

	Discussion 
	Materials and Methods 
	Conclusions 
	References

