Ultrasound waves propel rapid delivery of RNA to treat colon inflammation

2017-01-23

MIT and Brigham and Womens Hospital researchers have demonstrated that they can deliver strands of RNA efficiently to colon cells, using bursts of ultrasound waves that propel the RNA into the cells. Using this approach, the researchers dramatically turned down the production of a protein involved in inflammatory bowel disease (IBD), in mice.
"What we saw in this paper was the ultrasound can enable rapid delivery of these molecules," says Carl Schoellhammer, a postdoc at MITs Koch Institute for Integrative Cancer Research and the studys lead author. "In this case it was proinflammatory molecules that we were shutting off, and we saw tremendous knockdown of those proteins."
Delivering nucleic acids such as RNA to cells to dampen or boost a target protein is a strategy that holds potential to treat many diseases, but delivering the molecules to the right destination has proven challenging. The researchers demonstrated a simple method that does not require formulation or encapsulation of the RNA, and they believe their technique could be applied to treat other gastrointestinal (GI) disorders as well as diseases of other parts of the body.
"Having the ability to deliver large amounts of this material, which is not modified in any way, really opens up the possibility to have a positive impact on patients down the line," says Giovanni Traverso, a research affiliate at the Koch Institute and a gastroenterologist and biomedical engineer at Brigham and Womens Hospital.
Traverso and Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute, are the senior authors of the paper, which appears in the journal Gastroenterology.
In 2015, the same research team reported using ultrasound waves to enhance the delivery of drugs to the GI tract. The researchers then set their sights on delivering nucleic acids such as RNA, which are much larger than the small-molecule drugs they used in their previous study. RNA molecules are rapidly degraded in the GI tract and are more challenging to deliver because the RNA has to get inside cells to have an effect.
Scientists are very interested in delivering RNA to cells because snippets of RNA known as short interfering RNA (siRNA) can be used to turn off specific genes. However, because RNA is so prone to breakdown in the GI tract, most efforts to deliver it have focused on packaging it into particles or synthesizing nuclease-resistant forms to protect it from degradation.